DOI QR코드

DOI QR Code

Characterization of Hibiscus Chlorotic Ringspot Virus-Derived vsiRNAs from Infected Hibiscus rosa-sinensis in China

  • Han-hong Lan (Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University) ;
  • Luan-mei Lu (Key Laboratory of Landscape Plants with Fujian and Taiwan Characteristics of Fujian Colleges and Universities, School of Biological Sciences and Biotechnology, Minnan Normal University)
  • Received : 2024.06.10
  • Accepted : 2024.07.11
  • Published : 2024.10.01

Abstract

Lots of progress have been made about pathogen system of Hibiscus rosa-sinensis and hibiscus chlorotic ringspot virus (HCRSV), however, interactions between H. rosa-sinensis and HCRSV remain largely unknown. Hereon, firstly, HCRSV infection in H. rosa-sinensis from Zhangzhou city of China was confirmed by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods. Secondly, sequence feature analysis showed the full-length sequence of HCRSV-ZZ was 3,909 nucleotides (nt) in length and had a similar genomic structure with other carmovirus. It contains a 5' untranslated region (UTR), followed by seven open reading frames encoding for P28, P23, P81, P8, P9, P38, and P25, and the last a 3-terminal UTR. Thirdly, HCRSV-ZZ-derived vsiRNAs were identified and characterized for the first time from disease H. rosa-sinensis through sRNA-seq to reveal interactions between pathogen ant plant host. It was shown that the majority of HCRSV-ZZ-derived vsiRNAs were 21 nt, 22 nt, and 20 nt, with 21 nt being most abundant. The 5'-terminal nucleotide of HCRSV-ZZ vsiRNAs preferred U and C. HCRSV-ZZ vsiRNAs derived predominantly (72%) from the viral genome positive-strand RNA. The distribution of HCRSV-ZZ vsiRNAs along the viral genome is generally even, with some hot spots and cold spots forming in local regions. These hot spots and cold spots could be corresponded to the regions of stem loop secondary structures forming in HCRSV-ZZ genome by nucleotide paring. Taken together, our findings certify HCRSV infection in H. rosa-sinensis and provide an insight into interaction between HCRSV and H. rosa-sinensis and contribute to the prevention and treatment of this virus.

Keywords

Acknowledgement

This work was supported by the Nature Science Foundation of Fujian (grant no. 2018J01465), the National Natural Science Foundation of China (grant no. 31601613) and the Nature Science Foundation of Zhangzhou (grant no. ZZ2017J03).

References

  1. Baulcombe, D. 2004. RNA silencing in plants. Nature 431:356-363. 
  2. Blevins, T., Rajeswaran, R., Shivaprasad, P. V., Beknazariants, D., Si-Ammour, A., Park, H.-S., Vazquez, F., Robertson, D., Meins, F. Jr., Hohn, T. and Pooggin, M. M. 2006. Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res. 34:6233-6246. 
  3. Deleris, A., Gallego-Bartolome, J., Bao, J., Kasschau, K. D., Carrington, J. C. and Voinnet, O. 2006. Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68-71. 
  4. Ding, S.-W. 2010. RNA-based antiviral immunity. Nat. Rev. Immunol. 10:632-644.
  5. Donaire, L., Barajas, D., Martinez-Garcia, B., Martinez-Priego, L., Pagan, I. and Llave, C. 2008. Structural and genetic requirements for the biogenesis of Tobacco rattle virus-derived small interfering RNAs. J. Virol. 82:5167-5177. 
  6. Donaire, L., Wang, Y., Gonzalez-Ibeas, D., Mayer, K. F., Aranda, M. A. and Llave, C. 2009. Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203-214. 
  7. Dwivedi, R. N., Pandey, S. P. and Tripathi, V. J. 1977. Role of japapushpa (Hibiscus rosa-sinensis) in the treatment of arterial hypertension: a trial study. J. Res. Indian Med. Yoga Homeopath. 12:13-36. 
  8. Gao, R. and Wong, S.-M. 2013. Basic amino acid mutations in the nuclear localization signal of Hibiscus chlorotic ringspot virus p23 inhibit virus long distance movement. PLoS ONE 8:e74000. 
  9. Gao, R., Wan, Z. Y. and Wong, S.-M. 2013. Plant growth retardation and conserved miRNAs are correlated to Hibiscus chlorotic ringspot virus infection. PLoS ONE 8:e85476. 
  10. Huang, M., Koh, D. C.-Y., Weng, L.-J., Chang, M.-L., Yap, Y.- K., Zhang, L. and Wong, S.-M. 2000. Complete nucleotide sequence and genome organization of hibiscus chlorotic ringspot virus, a new member of the genus Carmovirus: evidence for the presence and expression of two novel open reading frames. J. Virol. 74:3149-3155. 
  11. Jones, D. R. and Behncken, G. M. 1980. Hibiscus chlorotic ringspot, a widespread virus disease in the ornamental Hibiscus rosa-sinensis. Aust. Plant Pathol. 9:4-5. 
  12. Koh, D. C.-Y., Liu, D. X. and Wong, S.-M. 2002. A six-nucleotide segment within the 3' untranslated region of hibiscus chlorotic ringspot virus plays an essential role in translational enhancement. J. Virol. 76:1144-1153. 
  13. Kreuze, J. F., Perez, A., Untiveros, M., Quispe, D., Fuentes, S., Barker, I. and Simon, R. 2009. Complete viral genome sequence and discovery of novel viruses by deep sequencing of small RNAs: a generic method for diagnosis, discovery and sequencing of viruses. Virology 388:1-7. 
  14. Lan, H., Chen, H., Liu, Y., Jiang, C., Mao, Q., Jia, D., Chen, Q. and Wei, T. 2015. Small interfering RNA pathway modulates initial viral infection in midgut epithelium of insect after ingestion of virus. J. Virol. 90:917-929. 
  15. Lan, H.-H. and Lu, L.-M. 2020. Characterization of hibiscus latent fort pierce virus-derived siRNAs in infected Hibiscus rosa-sinensis in China. Plant Pathol. J. 36:618-627. 
  16. Lan, H.-H., Wang, C.-M., Chen, S.-S. and Zheng, J.-Y. 2019. siRNAs derived from Cymbidium mosaic virus and Odontoglossum ringspot virus down-modulated the expression levels of endogenous genes in Phalaenopsis equestris. Plant Pathol. J. 35:508-520. 
  17. Lan, H., Wang, H., Chen, Q., Chen, H., Jia, D., Mao, Q. and Wei, T. 2016. Small interfering RNA pathway modulates persistent infection of a plant virus in its insect vector. Sci. Rep. 6:20699. 
  18. Lee, K.-C., Lim, D., Wong, S.-M. and Dokland, T. 2003. Purification, crystallization and X-ray analysis of Hibiscus chlorotic ringspot virus. Acta Crystallogr. D Biol. Crystallogr. 59:1481-1483. 
  19. Li, S.-C. and Chang, Y.-C. 2002. First report of Hibiscus chlorotic ringspot virus in Taiwan. Plant Pathol. 51:803. 
  20. Li, W. and Wong, S.-M. 2006. Analyses of subgenomic promoters of Hibiscus chlorotic ringspot virus and demonstration of 5' untranslated region and 3'-terminal sequences functioning as subgenomic promoters. J. Virol. 80:3395-3405. 
  21. Li, Y., Deng, C., Shang, Q., Zhao, X., Liu, X. and Zhou, Q. 2016. Characterization of siRNAs derived from cucumber green mottle mosaic virus in infected cucumber plants. Arch. Virol. 161:455-458. 
  22. Liu, C., Chen, Z., Hu, Y., Ji, H., Yu, D., Shen, W., Li, S., Ruan, J., Bu, W. and Gao, S. 2018. Complemented palindromic small RNAs first discovered from SARS coronavirus. Genes (Basel) 9:442. 
  23. Luria, N., Reingold, V., Lachman, O. and Dombrovsky, A. 2013. Full-genome sequence of hibiscus chlorotic ringspot virus from Israel. Genome Announc. 1:e01050-13. 
  24. Mandadi, K. K. and Scholthof, K.-B. G. 2015. Genome-wide analysis of alternative splicing landscapes modulated during plant-virus interactions in Brachypodium distachyon. Plant Cell 27:71-85. 
  25. Meng, C., Chen, J., Ding, S.-W., Peng, J. and Wong, S.-M. 2008. Hibiscus chlorotic ringspot virus coat protein inhibits transacting small interfering RNA biogenesis in Arabidopsis. J. Gen. Virol. 89:2349-2358. 
  26. Meng, C., Chen, J., Peng, J. and Wong, S.-M. 2006. Host-induced avirulence of hibiscus chlorotic ringspot virus mutants correlates with reduced gene-silencing suppression activity. J. Gen. Virol. 87:451-459. 
  27. Mi, S., Cai, T., Hu, Y., Chen, Y., Hodges, E., Ni, F., Wu, L., Li, S., Zhou, H., Long, C., Chen, S., Hannon, G. J. and Qi, Y. 2008. Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5' terminal nucleotide. Cell 133:116-127. 
  28. Mitter, N., Koundal, V., Williams, S. and Pappu, H. 2013. Differential expression of tomato spotted wilt virus-derived viral small RNAs in infected commercial and experimental host plants. PLoS ONE 8:e76276. 
  29. Molnar, A., Csorba, T., Lakatos, L., Varallyay, E., Lacomme, C. and Burgyan, J. 2005. Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J. Virol. 79:7812-7818. 
  30. Morel, J.-B., Godon, C., Mourrain, P., Beclin, C., Boutet, S., Feuerbach, F., Proux, F. and Vaucheret, H. 2002. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in posttranscriptional gene silencing and virus resistance. Plant Cell 14:629-639. 
  31. Niu, S., Gil-Salas, F. M., Tewary, S. K., Samales, A. K., Johnson, J., Swaminathan, K. and Wong, S.-M. 2014. Hibiscus chlorotic ringspot virus coat protein is essential for cell-to-cell and long-distance movement but not for viral RNA replication. PLoS ONE 9:e113347. 
  32. Niu, X., Sun, Y., Chen, Z., Li, R., Padmanabhan, C., Ruan, J., Kreuze, J. F., Ling, K., Fei, Z. and Gao, S. 2017. Using small RNA-seq data to detect siRNA duplexes induced by plant viruses. Genes (Basel) 8:163. 
  33. Parrella, G. and Mignano, A. 2024. First report of Hibiscus chlorotic ringspot virus infecting Hibiscus rosa-sinensis in Italy. Plant Dis. 108:828. 
  34. Prabha, K., Baranwal, V. K. and Jain, R. K. 2013. Applications of next generation high throughput sequencing technologies in characterization, discovery and molecular interaction of plant viruses. Indian J. Virol. 24:157-165. 
  35. Qu, F., Ye, X. and Morris, T. J. 2008. Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc. Natl. Acad. Sci. U. S. A. 105:14732-14737. 
  36. Rubio, M., Rodriguez-Moreno, L., Ballester, A. R., de Moura, M. C., Bonghi, C., Candresse, T. and Martinez-Gomez, P. 2015. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. Mol. Plant Pathol. 16:164-176. 
  37. Sharma, N., Sahu, P. P., Puranik, S. and Prasad, M. 2013. Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs). Mol. Biotechnol. 55:63-77. 
  38. Tang, J., Elliott, D. R., Quinn, B. D., Clover, G. R. G. and Alexander, B. J. R. 2008. Occurrence of Hibiscus chlorotic ringspot virus in Hibiscus spp. in New Zealand. Plant Dis. 92:1367. 
  39. Vaucheret, H. 2006. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 20:759-771. 
  40. Wang, A. 2015. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol. 53:45-66. 
  41. Waterworth, H. E., Lawson, R. H. and Monroe, R. L. 1976. Purification and properties of Hibiscus chlorotic ringspot virus. Phytopathology 66:570-575. 
  42. Xu, D. and Zhou, G. 2017. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol. J. 14:27. 
  43. Yan, F., Zhang, H., Adams, M. J., Yang, J., Peng, J., Antoniw, J. F., Zhou, Y. and Chen, J. 2010. Characterization of siRNAs derived from rice stripe virus in infected rice plants by deep sequencing. Arch. Virol. 155:935-940. 
  44. Yang, J., Zheng, S.-L., Zhang, H.-M., Liu, X.-Y., Li, J., Li, J.-M. and Chen, J.-P. 2014. Analysis of small RNAs derived from Chinese wheat mosaic virus. Arch. Virol. 159:3077-3082. 
  45. Zhang, X. and Wong, S.-M. 2009. Hibiscus chlorotic ringspot virus upregulates plant sulfite oxidase transcripts and increases sulfate levels in kenaf (Hibiscus cannabinus L.). J. Gen. Virol. 90:3042-3050. 
  46. Zheng, G. H., Liao, F. R., Ye, T., Zhang, W. Z. and Ming, Y. L. 2018. First report of Hibiscus chlorotic ringspot virus infecting hibiscus in Fujian province, China. Plant Dis. 102:2046. 
  47. Zhou, T., Fan, Z. F., Li, H. F. and Wong, S. M. 2006. Hibiscus chlorotic ringspot virus p27 and its isoforms affect symptom expression and potentiate virus movement in kenaf (Hibiscus cannabinus L.). Mol. Plant-Microbe Interact. 19:948-957.