DOI QR코드

DOI QR Code

Applicability Evaluation of High-Speed, High-Pressure Dynamic Compression Technology for Powder Molding of Pyrophyllite

연납석 분말 성형을 위한 고속고압 동적 압축 기술의 적용성 평가

  • Seong-Seung Kang ;
  • Jeongdu Noh
  • 강성승 (조선대학교 에너지자원공학과) ;
  • 노정두 (조선대학교 공학기술연구원)
  • Received : 2024.08.29
  • Accepted : 2024.09.12
  • Published : 2024.09.30

Abstract

This study is to evaluate the applicability of high-speed, high-pressure dynamic compression technology for the powder molding of talc. To achieve this, powder molding test was conducted using a self-developed high-speed, high-pressure dynamic compression device, and the results were analyzed. Additionally, the behavior characteristics of pyrophyllite powder particles under dynamic compression were analyzed using the PFC2D. Quantitative analyses, as well as mapping and point analyses, were conducted using the SEM on pyrophyllite from the Naju ceramic Mine and the Bugok mine. The results showed that the weight ratio of composed elements in both mines was in the order of oxygen > silicon > aluminum. A pyrophyllite powder solid with a diameter of 14.5 mm and a thickness of 3 mm was successfully produced using a high-speed, high-pressure dynamic compression device capable of generating an instantaneous compressive force with a 30 kgf projectile dropped from a height of 1.5 m in about 0.4 seconds. Numerical analysis of pyrophyllite powder using PFC2D analyzed that in the numerical model, the compression ratio was approximately 56%, and the porosity decreased from 16.0% to 1.0%, indicating almost no remaining pores.

본 연구는 연납석 분말 성형을 위한 고속고압 동적 압축 기술의 적용성을 평가하기 위함이다. 이를 위하여 자체 개발한 고속고압 동적 압축 장치를 이용하여 분말 성형 시험을 수행하였으며, 그 결과를 분석하였다. 또한 PFC2D 입자유동 해석 프로그램을 이용하여 동적 압축에 따른 연납석 분말 입자의 거동 특성을 분석하였다. 시험 대상 재료인 나주세라믹광산과 부곡광산 연납석 시료에 대하여 주사현미경(SEM) 측정을 통한 정량분석, 맵 분석, 점분석을 실시한 결과, 구성 원소의 중량비는 두 광산 모두에서 산소 > 규소 > 알루미늄 순으로 나타났다. 30 kgf 하중 발사체를 1.5 m 높이에서 약 0.4초의 순간 압축력을 발생시킬 수 있는 고속고압 동적 압축 장치를 이용하여 직경 14.5 mm와 두께 3 mm 크기의 연납석 분말 성형체를 성공적으로 제작하였다. PFC2D를 이용한 연납석 분말에 대한 수치해석을 실시한 결과, 수치모델에서 압축률은 약 56%, 공극률은 16.0%에서 1.0%로 변화되어 시료 내 공극은 거의 존재하지 않은 것으로 분석되었다.

Keywords

Acknowledgement

본 과제(결과물)는 2024년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다. (과제관리번호: 2021RIS-002). 논문에 대해 유익하고 가치있는 의견을 주신 심사위원들께 감사드립니다.

References

  1. Arunachalam, R., Krishnan, P.K., Muraliraja, R., 2019, A review on the production of metal matrix composites through stir casting - Rurnace design, properties, challenges, and research oppotunities. Journal of Manufacturing Processes, Vol. 42, pp. 213-245.
  2. Cho, H.K., 2000, Pyrophyllite and its application.The Mineralogical Society of Korea, Mineral Science and Industry, Vol. 13, No. 1, 00. pp. 28-38.
  3. Dobrzanski, L.A., Dobrzanska-Danikiewicz, A.D., Achtelik-Franczak, A, Dobrzanski, L.B., Hajduczek, E, Matula, G., 2017, Fabrication technologies of the sintered materials including materials for medical and dental application. Chapter 2, Powder Metallurgy-Fundamentals and Case Studies, INTECH, pp. 17-52.
  4. Hang, Z., Guo, Y., Liu, B., Zhang, Z., Lin, T., Wang, D., 2023, Influence of the wire spatial structure on the distribution of product and the peak overpressure of shockwave generated by the electric explosion. Applied Science, MDPI, 13, 7608, pp. 1-14.
  5. Itasca, 2002, PFC2D: Particle Flow Code in 2 Dimensions, User's Guide.
  6. Jeong, Y., 2016, Development and performance evaluation of pyrophyllite-based ceramic membranes for wastewater treatment. Master thesis, Korea University, 1-118.
  7. KAERI, 2011, Application of dynamic compaction technology for high performance and precision powder products. KAERI Final Report (RR-3267), pp. 1-159.
  8. Kang, S.S., Na, T., Noh, J., 2023b, Distribution of agalmatolite mines in South Korea and their utilization, The Journal of Engineering Geology, Vol. 33, No. 4, pp. 543-553.
  9. Kang, S.S., Kim, D., Park, H., Ban, S., Oh, T., Lee, Y., Gwak, T., Wi, J., 2023a, High-speed, high-pressure powder molding technology for the development of new industrial ceramic materials from pyrophyllite, The Korean Society of Engineering Geology, Proceeding of KSCE 2023 Fall Conference, October 26-27, meeting, 67-68.
  10. KIGAM, 2021, 2020/2021 Mineral commodity supply and demand, pp. 194-203.
  11. Kim, Y., Kim, S.J., Cho, S.H., 2012, A study on the shock compaction of ceramic powders using explosive, Tunnel & Underground, Journal of Korean Society for Rock Mechanics, Vol. 22, No. 2, pp. 157-161.
  12. Kim, Y., Mitsugib, F., Tomoaki, I., Hokamoto, K, Itoh, S., 2011, Shock-consolidated iO2 bulk with pure anatase phases fabricated by explosive compaction using underwater shock wave, Journal of the European Ceramic Society, Vol. 31, pp. 1033-1039.
  13. Lee, H.W., Song, H.S., Kim, J,S., Shin, H.I., Lim, G,J., Choi, I.M., Moon, H., Jeon, H.W., 2001, Powder molding process for structural cemamics. Ceramist, The Korean Ceramic Society, Vol. 4, pp. 18-26.
  14. Prasad, M., Xu, H.Y., Saxena, S., 2008, Multicomponent sorption of Pb (II), Cu (II) and Zn (II) onto low-cost mineral adsorbent, Journal of Hazardous Materials, Vol. 154, No. 1-3, pp. 221-229.
  15. Ralls, A.M., Daroonparvar, M., Menezes, P.I., 2024, Spark plasma sintering of Mg-based alloys: microstructure, mechanical properties, corrosion behavior, and tribological performance, Journal of Magnesium and Alloys, Vol. 12, pp. 405-442.