DOI QR코드

DOI QR Code

An intelligent cooling control system for mitigating the cracking risks of mass concretes during bridge construction

  • Ruinan An (Department of Hydraulic Engineering, Tsinghua University) ;
  • Peng Lin (Department of Hydraulic Engineering, Tsinghua University) ;
  • Daoxiang Chen (Department of Hydraulic Engineering, Tsinghua University) ;
  • Jianshu Ouyang (Department of Hydraulic Engineering, Tsinghua University) ;
  • Zichang Li (Sichuan Energy Internet Research Institute, Tsinghua University) ;
  • Zheng Zhang (China Highway Engineering Consulting Corporation) ;
  • Yuanguang Liu (Snohydro Bureau 11 Co. LTD.)
  • Received : 2024.02.01
  • Accepted : 2024.09.03
  • Published : 2024.05.25

Abstract

During any construction involving mass concrete, it is crucial to control cracking during the placement and curing process. This study develops an intelligent cooling control system that regulates water temperature and flow based on concrete hydration heat, effectively preventing cracking in bridge construction. The system consists of hardware, a neural network-based control algorithm, and an information management system. An optimal cooling control strategy is proposed to dynamically regulate water flow and temperature, preventing cracking by utilizing real-time temperature data, target control curves, neural network algorithms, and cloud-based computing. The intelligent cooling control system has been successfully implemented in controlling cracking risks during bridge construction. It not only mitigates the risk but also provides a convenient management strategy for bridge construction projects. The optimal cooling control strategy ensures high accuracy and stability under unsupervised learning conditions. This intelligent cooling control system can be applied to similar constructions such as bridge, dam, and building that involve the use of mass concrete.

Keywords

Acknowledgement

The research described in this paper was financially supported by Road & Bridge International Huabei Co., Ltd (Grant No. ZJLJ-JWGSXM-JSFW-2019-003), the China Three Gorges Corporation (No: WDD/0578) Snohydro Bureau 11 Co LTD's Management Department of the Julius Nyerere Hydropower Station Project in the United Republic of Tanzania (Grant No. SHC-JNHPP-JSFW-01-18012022) and Management Department of the Kafue Gorge Lower Hydropower Station Project in Zambia (Grant No. SH-KGL-SUB-2021003). The authors would like to express their gratitude for the financial support that made this study possible.

References

  1. American Road & Transportation Builders Association (2021), "2021 Bridge Conditions Report", American Road & Transportation Builders Association, Washington D.C., USA.
  2. An, G., Yang, N., Li, Q., Hu, Y. and Yang, H. (2020), "A simplified method for real-time prediction of temperature in mass concrete at early age", Appl. Sci., 13(10), 4451. https://doi.org/10.3390/app10134451
  3. An, R.N., Lin, P., Li, Z.C., Zhang, L.B., Cheng, F., Xia, Y., Liu, Y. and Liu, H.Y. (2024), "Intelligent ventilation-on-demand control system for the construction of underground tunnel complex", J. Intell. Constr., 2, 9180032. https://doi.org/10.26599/JIC.2024.9180032
  4. Azenha, M., Lameiras, R., de Sousa, C. and Barros, J. (2014), "Application of air cooled pipes for reduction of early age cracking risk in a massive RC wall", Eng. Struct., 62-63, 148-163. https://doi.org/10.1016/j.engstruct.2014.01.018
  5. Bentz, D.P., Waller, V. and de Larrard, F. (1998), "Prediction of adiabatic temperature rise in conventional and high-performance concretes using a 3-D microstructural model", Cemram. Concrete Res., 28(2), 285-297. https://doi.org/10.1016/S0008-8846(97)00264-0
  6. Chorzepa, M.G., Hamid, H., Durham, S.A. and Goode, L. (2018), "Analysis of cracking caused by hydration heat in bridge seals utilizing innovative massive concrete mixtures", In: Structures Congress 2018, April.
  7. Chuc, N.T., Don, L.Q., Thoan, P.V. and Kiet, B.A. (2018), "The effects of insulation thickness on temperature field and evaluating cracking in the mass concrete", Electr. J. Struct. Eng., 18(2), 128-132. https://doi.org/10.56748/ejse.182722
  8. Conceicao, J., Faria, R., Azenha, M. and Miranda, M. (2020), "A new method based on equivalent surfaces for simulation of the post-cooling in concrete arch dams during construction", Eng. Struct., 209, 109976. https://doi.org/10.1016/j.engstruct.2019.109976
  9. Crowley, A.M. (2015), "The Development of a Lower Heat Concrete Mixture for Mass Concrete Placement Conditions", Ph.D. Dissertation; Tennessee Technological University, TN, USA.
  10. Dias, I.F., Oliver, J., Lemos, J.V. and Lloberas-Valls, O. (2016), "Modeling tensile crack propagation in concrete gravity dams via crack-path-field and strain injection techniques", Eng. Fract. Mech., 154, 288-310. https://doi.org/10.1016/j.engfracmech.2015.12.028
  11. Djamila, B., Othmane, B., Said, K. and El-Hadj, K. (2018), "Combined effect of mineral admixture and curing temperature on mechanical behavior and porosity of SCC", Adv. Concrete Constr., Int. J., 6(1), 69-85. https://doi.org/10.12989/acc.2018.6.1.069
  12. Do, T.A. (2015), "Influence of footing dimensions on early-age temperature development and cracking in concrete footings", J. Bridge Eng., 20(3), 6014007. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000690
  13. Do, T.A., Lawrence, A.M., Tia, M. and Bergin, M.J. (2014), "Determination of required insulation for preventing early-age cracking in mass concrete footings", Transport Res. Rec., 2441(1), 91-97. https://doi.org/10.3141/2441-12
  14. Feng, C., Chang, L., Li, C., Ding, T. and Mai, Z. (2019), "Controller optimization approach using LSTM-based identification model for pumped-storage units", IEEE Access, 7, 32714-32727. https://doi.org/10.1109/ACCESS.2019.2903124
  15. Garcia, A., Lura, P., Partl, M.N. and Jerjen, I. (2013), "Influence of cement content and environmental humidity on asphalt emulsion and cement composites performance", Mater. Struct., 46(8), 1275-1289. https://doi.org/10.1617/s11527-012-9971-6
  16. Gilliland, J.A. and Dilger, W.H. (1997), "Monitoring concrete temperature during construction of the Confederation Bridge: The Confederation Bridge", Can. J. Civil Eng., 24(6), 941-950. https://doi.org/1.1139/CJCE-24-6-941
  17. Huang, Y.H., Liu, G.X., Huang, S.P., Rao, R. and Hu, C.F. (2018), "Experimental and finite element investigations on the temperature field of a massive bridge pier caused by the hydration heat of concrete", Constr. Build. Mater., 192, 240-252. https://doi.org/10.1016/j.conbuildmat.2018.10.128
  18. Kang, F., Li, J. and Dai, J. (2019), "Prediction of long-term temperature effect in structural health monitoring of concrete dams using support vector machines with Jaya optimizer and salp swarm algorithms", Adv. Eng. Softw., 131, 60-76. https://doi.org/10.1016/j.advengsoft.2019.03.003
  19. Khan, M. and Ali, M. (2016), "Use of glass and nylon fibers in concrete for controlling early age micro cracking in bridge decks", Constr. Build. Mater., 125, 800-808. https://doi.org/10.1016/j.conbuildmat.2016.08.111
  20. Khandel, O., Soliman, M., Floyd, R.W. and Murray, C.D. (2021), "Performance assessment of prestressed concrete bridge girders using fiber optic sensors and artificial neural networks", Struct. Infrastr. Eng., 17(5), 605-619. https://doi.org/10.1080/15732479.2020.1759658
  21. Kim, J.K. and Kim, K.H. (1992), "Thermal stress analysis for the heat of hydration considering creep and shrinkage effects in mass concrete", J. Korea Concr. Inst., 4(3), 101-111.
  22. Kim, K,-H., Jeon, S.-E., Kim, J.K. and Yang, S. (2003), "An experimental study on thermal conductivity of concrete", Cement Concrete Res., 33(3), 363-371. https://doi.org/10.1016/S0008-8846(02)00965-1
  23. Krauss, P.D. and Rogalla, E.A. (1996), "Transverse Cracking in Newly Constructed Bridge Decks (NCHRP Report 380)", Transportation Research Board & National Research Council, Washington, D.C., USA.
  24. Lawson, L., Ryan, K.L. and Buckle, I.G. (2020), "Bridge temperature profiles revisited: thermal analyses based on recent meteorological data from Nevada", J. Bridge Eng., 25(1), 4019124. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001498
  25. Li, Y., Nie, L. and Wang, B. (2014), "A numerical simulation of the temperature cracking propagation process when pouring mass concrete", Autom. Constr., 37, 203-210 https://doi.org/10.1016/J.AUTCON.2013.08.005
  26. Li, M., Lin, P., Chen, D.X., Li, Z.,C., Liu, K. and Tan, Y.S. (2023), "An ANN based short-term temperature forecast model for mass concrete cooling control", J. Tsinghua Univ. (Sci. & Technol.), 28(3), 511-524. https://doi.org/10.26599/TST.2022.9010015
  27. Li, P.F., Wang, H.Y., Nie, D., Wang, D.Y. and Wang, C.Z. (2023), "A method to analyze the long-term durability performance of underground reinforced concrete culvert structures under coupled mechanical and environmental loads", J. Intell. Constr., 1, 9180011. https://doi.org/10.26599/1c.2023.9180011
  28. Lin, P., Li, Q.B., Zhou, S.W. and Hu, Y. (2013), "Intelligent cooling control method and system for mass concrete", J. Hydr. Eng., 44(8), 950-957. [in Chinese]
  29. Lin, P., Peng, H.Y., Fan, Q.X., Xiang, Y.F., Yang, Z. and Yang, N. (2021), "A 3D thermal field restructuring method for concrete dams based on real-time temperature monitoring", KSCE J. Civil Eng., 25(4), 1326-1340. https://doi.org/10.1007/s12205-021-1084-8
  30. Miao, P.Y., Yokota, H. and Zhang, Y.F. (2023), "Deterioration prediction of existing concrete bridges using a LSTM recurrent neural network", Struct. Infrastr. Eng., 19(4), 475-489. https://doi.org/10.1080/15732479.2021.1951778
  31. Mohammadikia, R. and Aliasghary, M. (2019), "A fractional order fuzzy PID for load frequency control of four-area interconnected power system using biogeography-based optimization", Int. T. Electr. Energy, 29(2), e2735. https://doi.org/10.1002/etep.2735
  32. Ng, P.L., Chen, J.J. and Kwan, A.K.H. (2017), "Adiabatic temperature rise of concrete with limestone fines added as a filler", Procedia Eng., 172, 768-775. https://doi.org/10.1016/j.proeng.2017.02.121
  33. Nguyen, T., Huynh, T. and Tang, V. (2019), "Prevention of crack formation in massive concrete at an early age by cooling pipe system", Asian J. Civil Eng., 20(8), 1101-1107. https://doi.org/10.1007/s42107-019-00175-5
  34. Ning, Z.Y., Lin, P., Ouyang J.S., Yang, Z.L., He, M.W. and Ma, F.P. (2022), "Intelligent cooling control for mass concrete relating to spiral case structure", Adv. Concrete Constr., Int. J., 14(1), 57-70. https://doi.org/10.12989/acc.2022.14.1.057
  35. Pearson, C. and Delatte, N. (2006), "Collapse of the Quebec Bridge, 1907", J. Perform. Constr. Facil., 20(1), 84-91. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:1(84)
  36. Peng, H., Lin, P., Xiang, Y., Chen, W., Zhou, S., Yang, N. and Qiao, Y. (2020), "A positioning method of temperature sensors for monitoring dam global thermal field", Front. Mater., 7, 587738. https://doi.org/10.3389/fmats.2020.587738
  37. Remond, S. and Pizette, P. (2014), "A DEM hard-core soft-shell model for the simulation of concrete flow", Cem. Concrete Res., 58, 169-178. https://doi.org/10.1016/j.cemconres.2014.01.022
  38. Sahani, A.K., Samanta, A.K. and Roy, D.K. (2019), "SInfluence of mineral by-products on compressive strength and microstructure of concrete at high temperature", Adv. Concrete Constr., Int. J., 7(4), 263-275. https://doi.org/10.12989/acc.2019.7.4.263
  39. Sargam, Y., Faytarouni, M., Riding, K., Wang, K., Jahren, C. and Shen, J. (2019), "Predicting thermal performance of a mass concrete foundation -A field monitoring case study", Case Stud. Constr. Mater., 11, e289. https://doi.org/10.1016/j.cscm.2019.e00289
  40. Semendary, A.A., Steinberg, E.P., Walsh, K.K. and Barnard, E. (2019), "Effects of temperature distributions on thermally induced behavior of UHPC shear key connections of an adjacent precast prestressed concrete box beam bridge", J. Bridge Eng., 24(2), 4018115. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001346
  41. Seo, T., Kim, S. and Lim, C. (2015), "Experimental study on hydration heat control of mass concrete by vertical pipe cooling method", J. Asian Architect. Build., 14(3), 657-662. https://doi.org/10.3130/jaabe.14.657
  42. Song, X., Melhem, H., Li, J., Xu, Q. and Cheng, L. (2016), "Effects of solar temperature gradient on long-span concrete box girder during cantilever construction", J. Bridge Eng., 21(3), 4015061. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000844
  43. Song, C.J., Zhang, G., Wen, H. and Zhang, Y.F. (2020), "Effect of pipe-cooling system on thermal-mechanical behaviour of PC box bridge girders at hydration age", ABEN, 1, 9. https://doi.org/10.1186/s43251-020-00009-4
  44. Subramaniam, K.V., Kunin, J., Curtis, R. and Streeter, D. (2010), "Influence of early temperature rise on movements and stress development in concrete decks", J. Bridge Eng., 15(1), 108-116. https://doi.org/10.1061/(ASCE)1084-0702(2010)15:1(108)
  45. Sun, X.J., Wang, S.Q., Jin, J.P., Wang, Z. and Gong, F.Y. (2023), "Computational methods of mass transport in concrete under stress and crack conditions: A review", J. Intell. Constr., 1, 9180015. https://doi.org/10.26599/JIC.2023.9180015
  46. Tatro, S.B. and Schrader, E.K. (1985), "Thermal considerations for roller-compacted concrete", J. Proceedings, 82(2), 119-128. https://doi.org/10.14359/10319
  47. Vytenis, B. (1994), "Fire Safety Design and Concrete", Fire Safety J., 23(4), 439-442. https://doi.org/10.1016/0379-7112(94)90007-8
  48. Wu, X.G., Yu, S.Y., Tao, X.K., Chen, B.C., Liu, H., Yang, M. and Thomas, H.K. (2020), "Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions", Adv. Concrete Constr., Int. J., 9(5), 459-467. https://doi.org/10.12989/acc.2020.9.5.459
  49. Yu, X.Z., Chen, J.Y., Xu, Q. and Zhi, Z. (2018), "Research on the influence factors of thermal cracking in mass concrete by model experiments", KSCE J. Civ. Eng., 22(8), 2906-2915. https://doi.org/10.1007/s12205-017-2711-2
  50. Zhang, Y., Zhu, Y.P., Ma, P.F., He, S.L. and Shao, X.D. (2023), "Effect of ages and season temperatures on bi-surface shear behavior of HESUHPC-NSC composite", Adv. Concrete Const., Int. J., 15(6), 359-376. https://doi.org/10.12989/acc.2023.15.6.359
  51. Zhu, Y.P., Zhang, Y., Hussein, H.H., Qiu, M.H., Meng, D.L. and Chen, G. (2022), "Flexural strengthening of large-scale damaged reinforced concrete bridge slab using UHPC layer with different interface techniques", Struct. Infrastr. E., 18(6), 879-892. https://doi.org/10.1080/15732479.2021.1876104