DOI QR코드

DOI QR Code

High Thermal Degradation and Flame Retardancy of Polyolefin/Metal Hydroxide Composite Prepared by Radiation Crosslinking Technology

방사선 가교 기술로 제조된 Polyolefin/Metal Hydroxide 복합재료의 고온 열화 특성 및 난연성

  • Yong-Hyeon Oh (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Byoung-Min Lee (Industry-Academic Research Cooperation Foundation, Shinhan University) ;
  • Jeong-In Kim (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Jong Kyu Kim (Department of Energy Engineering, Shinhan University) ;
  • Sung-In Jeong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Joon-Pyo Jeun (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Youn-Mook Lim (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jae-Hak Choi (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Jong-Seok Park (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 오용현 (충남대학교 고분자공학과) ;
  • 이병민 (신한대학교 산학협력단) ;
  • 김정인 (충남대학교 고분자공학과) ;
  • 김종규 (신한대학교 에너지공학과) ;
  • 정성린 (한국원자력연구원 첨단방사선연구소) ;
  • 전준표 (한국원자력연구원 첨단방사선연구소) ;
  • 임윤묵 (한국원자력연구원 첨단방사선연구소) ;
  • 최재학 (충남대학교 고분자공학과) ;
  • 박종석 (한국원자력연구원 첨단방사선연구소)
  • Received : 2024.09.19
  • Accepted : 2024.09.23
  • Published : 2024.09.30

Abstract

Polyolefins (PO) are used in various industrial fields due to their excellent mechanical properties, processability, and chemical resistance. However, they have low flame retardancy, and when exposed to high temperatures, there are problem that mechanical properties deteriorate due to oxidation. In this study, we developed PO/metal hydroxide composites that exhibit excellent mechanical strength, heat resistance, and flame retardancy by using antioxidants and radiation crosslinking technology. To improve mechanical strength, heat resistance, and flame retardancy, PO/metal hydroxide/antioxidant composites were prepared and irradiated with an electron beam. Specifically, at temperatures above 200℃, the PO/metal hydroxide composites with primary and secondary antioxidants added and irradiated with a 100 kGy electron beam exhibited excellent thermal stability with a thermal shrinkage rate of less than 3%. In addition, the flame retardancy of the PO/metal hydroxide/antioxidant composites was improved due to enhanced thermal stability from electron beam irradiation and reduced thermal decomposition rate from the antioxidants. These results indicate that radiation crosslinking and antioxidants are effective method to simultaneously achieve mechanical properties, heat resistance, and flame retardancy.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 한국원자력연구원의 주요사업(523330-24)에 의해 수행되었으며, 이에 감사드립니다.

References

  1. Liu H, Tong L, Fang Z, Wang Y and Alkadasi NAN. 2008. Effects of high-energy electron beam irradiation on the properties of flame-retardant HDPE/EVA/Mg(OH)2 composites. Polym-Plast. Technol. Mater. 47:1097-1100. https://doi.org/10.1080/03602550802355859.
  2. Sabet M, Hassan A, Ratnam CT and Ratnam CT. 2012. Electron beam irradiation of low density polyethylene/ethylene vinyl acetate filled with metal hydroxides for wire and cable applications. Polym. degrad. stab. 97:1432-1437. https://doi.org/10.1016/j.polymdegradstab.2012.05.010.
  3. Kim DS, Lee BM, Kim HR, Park S, Park JS, Hwang D, Kim JW and Choi JH. 2024. Preparation and characterization of poly(ethylene-co-vinyl acetate)/high-density polyethylene/aluminum hydroxide/clay composites by electron beam irradiation. Polym. Adv. Technol. 35:e6210. https://doi.org/10.1002/pat.6210.
  4. Kim JI, Lee BM, Kim HR, Park JS, Jung ST, Nho YC, Kim JW and Choi JH. 2024. Preparation and characterization of ethylene-propylene-diene monomer rubber/metal hydroxide composites by electron beam irradiation. Polym. Eng. Sci. 64:1454-1461. https://doi.org/10.1002/pen.26631.
  5. Shin JH, Kim DS, Lee BM, Park JS, Jeong SI and Choi JH. 2021. Effect of electron beam irradiation on EVA/HDPE blends containing various amounts of magnesium hydroxide flame retardant. J. Radiat. Ind. 15:173-179. https://doi.org/10.23042/radin.2021.15.3.173.
  6. Kim DS, Shin JH, Lee BM, Park JS, Jeong SI and Choi JH. 2021. Preparation and characterization of EVA/HDPE composites cross-linked by electron beam irradiation. J. Radiat. Ind. 15:159-165. https://doi.org/10.23042/radin.2021.15.3.159.
  7. Li Y, Qi L, Liu Y, Qiao J, Wang M, Liu X and Li S. 2022. Recent advances in halogen-free flame retardants for polyolefin cable sheath materials. Polymers 14:2876. https://doi.org/10.3390/polym14142876.
  8. Ko YS, Kwon WS, No MH and Yim JH. 2015. A study on the control of microstructures of polyalphaolefins via cationic polymerization. Polym. Korea 39:346-352. https://doi.org/10.7317/pk.2015.39.2.346.
  9. Han JG, Park SJ, Fanzhu L and Park HW. 2021. Effects on the tensile strength and discharge volume of the white biodegradable plastic film added compatibilizer. Korean J. Packag. Sci. Technol. 27:169-174. https://doi.org/10.20909/kopast.2021.27.3.169.
  10. Allen NS, Hoang E, Liauw CM, Edge M and Fontan E. 2001. Influence of processing aids on the thermal and photostabilisation of HDPE with antioxidant blends. Polym. degrad. stab. 72:367-376. https://doi.org/10.1016/S0141-3910(01)00040-4.
  11. Zheng Q, Hu D and Fan J. 2022. Rapid Determination of Antioxidant Irganox 1076 in Polyethylene. MATEC Web Conf. 358:01029. https://doi.org/10.1051/matecconf/202235801029.
  12. Xu A, Roland S and Colin X. 2021. Thermal ageing of a silane-crosslinked polyethylene stabilised with an excess of Irganox 1076®. Polym. degrad. stab. 189:109597. https://doi.org/10.1016/j.polymdegradstab.2021.109597.
  13. Reingruber E and Buchberger W. 2010. Analysis of polyolefin stabilizers and their degradation products. J. Sep. Sci. 33:3463-3475. https://doi.org/10.1002/jssc.201000493.
  14. Wang Y, Ren H, Yan Y, He S, Wu S and Zhao Q. 2021. Hindered phenolic antioxidants as heat-oxygen stabilizers for HDPE. Polym. Polym. Compos. 29:1403-1411. https://doi.org/10.1177/0967391120971167.
  15. Mouren A, Pollet E and Averous L. 2024. Synthesis and assessment of novel sustainable antioxidants with different polymer systems. Polymers 16:413. https://doi.org/10.3390/polym16030413.
  16. Kim SY, Kim HG, Park SC and Min KE. 2013. Effect of phenolic antioxidants system on yellowing of amorphous poly-α-olefin. Polym. Korea 37:156-161. http://dx.doi.org/10.7317/pk.2013.37.2.156.
  17. de Oliveira CIR, Rocha MCG, de Assis JT and da Silva ALN. 2022. Morphological, mechanical, and thermal properties of PP/SEBS/talc composites. J. Thermoplast. Compos. Mater. 35:281-299. https://doi.org/10.1177/0892705719876678.
  18. Wu Y, Shentu B and Weng Z. 2017. Synergistic effect of SBS and trimethylopropane trimethacrylate (TMPTMA) on dynamically vulcanized SEBS/PP blends. J. Appl. Polym. Sci. 134:44392. https://doi.org/10.1002/app.44392.
  19. Hippi U, Mattila J, Korhonen M and Seppala J. 2003. Compatibilization of polyethylene/aluminum hydroxide (PE/ATH) and polyethylene/magnesium hydroxide (PE/MH) composites with functionalized polyethylenes. Polymer 44:1193-1201. https://doi.org/10.1016/S0032-3861(02)00856-X.
  20. Zhang L, Li CZ, Zhou Q and Shao W. 2007. Aluminum hydroxide filled ethylene vinyl acetate (EVA) composites: effect of the interfacial compatibilizer and the particle size. J. Mater. Sci. 42:4227-4232. https://doi.org/10.1007/s10853-006-0630-6.
  21. Lee SH, Lee BM, Kim HR, Park S, Park JS, Kim YS, Park S and Choi JH. 2023. Preparation and characterization of poly(ethylene-co-vinyl acetate)/magnesium hydroxide composites by electron beam crosslinking. J. Radiat. Ind. 17:225-232. https://doi.org/10.23042/radin.2023.17.3.225.
  22. Khanji AN, Michaux F, Petit J, Salameh D, Rizk T, Jasniewski J and Banon S. 2018. Structure, gelation, and antioxidant properties of curcumin-doped casein micelle powder produced by spray-drying. Food Funct. 9:971-981. https://doi.org/10.1039/C7FO01923H.
  23. Kivela R, Gates F and Sontag-Strohm T. 2009. Degradation of cereal beta-glucan by ascorbic acid induced oxygen radicals. J. Cereal Sci. 49:1-3. https://doi.org/10.1016/j.jcs.2008.09.003.
  24. Gensler R, Plummer CJG, Kausch HH, Kramer E, Pauquet JR and Zweifel H. 2000. Thermo-oxidative degradation of isotactic polypropylene at high temperatures: phenolic antioxidants versus HAS. Polym. degrad. stab. 67:195-208. https://doi.org/10.1016/S0141-3910(99)00113-5.
  25. Ismail MN, Yehia AA and Korium AA. 2002. Preparation and evaluation of some novel organo-phosphorus compounds as antioxidants and antifatigue agents in rubber. J. Appl. Polym. Sci. 83:2984-2992. https://doi.org/10.1002/app.2327.
  26. Zhu S, Gong W, Luo J, Meng X, Xin Z, Wu J and Jiang Z. 2019. Flame retardancy and mechanism of novel phosphorus-silicon flame retardant based on polysilsesquioxane. Polymers 11:1304. https://doi.org/10.3390/polym11081304.
  27. Shin BW and Chung KS. 2012. Combustion Characteristics and Thermal Properties fodoi.org/10.7731/KIFSE.2012.26.1.089r Wood Flour-High Density Polyethylene Composites. J. Korean Inst. Fire Sci. Eng. 26:89-95. https://doi.org/10.7731/KIFSE.2012.26.1.089.
  28. Kim S, Yoon DS, Choi JK and Jo BW. 2007. Thermal Properties and Flame Retardancy of Poly(amic acid)/organoclay Nanocomposites. Elastomer 42:177-185. https://doi.org/10.12941/jkors.2007.42.3.177.
  29. Xiang S, Feng J, Yang H and Feng X. 2023. Synthesis and Applications of Supramolecular Flame Retardants: A Review. Molecules 28:5518. https://doi.org/10.3390/molecules28145518.
  30. Shen J, Liang J, Lin X, Lin H, Yu J and Wang S. 2022. The Flame-Retardant Mechanisms and Preparation of Polymer Composites and Their Potential Application in Construction Engineering. Polymers 14:82. https://doi.org/10.3390/polym14010082.