Acknowledgement
All authors would like to acknowledge the support of the Undergraduate Research Program (URP) of the Korea Foundation for the Advancement of Science & Creativity (KOFAC), which helped conduct the research.
References
- W. Fiers, R. Beyaert, W. Declercq, and P. Vandenabeele, "More than one way to die: Apoptosis, necrosis and reactive oxygen damage," Oncogene 18, 7719-7730 (1999).
- G. Benzi and A. Moretti, "Age- and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system," Free Radic. Biol. Med. 19, 77-101 (1995).
- B. Budzynska, A. Boguszewska-Czubara, M. Kruk-Slomka, K. Skalicka-Wozniak, A. Michalak, I. Musik, and G. Biala, "Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice," Psychopharmacology 232, 931-942 (2015).
- M. Valko, D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, and J. Telser, "Free radicals and antioxidants in normal physiological functions and human disease," Int. J. Biochem. Cell Biol. 39, 44-84 (2007).
- V. Heiskanen and M. R. Hamblin, "Photobiomodulation: Lasers vs. light emitting diodes?," Photochem. Photobiol. Sci. 17, 1003-1017 (2018).
- K. R. Byrnes, R. W. Waynant, I. K. Ilev, X. Wu, L. Barna, K. Smith, R. Heckert, H. Gerst, and J. J. Anders, "Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury," Lasers Surg. Med. 36, 171-185 (2005).
- Y. Y. Huang, K. Nagata, C. E. Tedford, T. McCarthy, and M. R. Hamblin, "Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro," J. Biophotonics 6, 829-838 (2013).
- M. R. Hamblin, "Shining light on the head: Photobiomodulation for brain disorders," BBA Clin. 6, 113-124 (2016).
- M. R. Hamblin, "Mechanisms and mitochondrial redox signaling in photobiomodulation," Photochem. Photobiol. 94, 199-212 (2018).
- L. F. de Freitas and M. R. Hamblin, "Proposed mechanisms of photobiomodulation or low-level light therapy," IEEE J. Sel. Top. Quantum Electron. 22, 7000417 (2016).
- A. C. Chen, P. R. Arany, Y. Y. Huang, E. M. Tomkinson, S. K. Sharma, G. B. Kharkwal, T. Saleem, D. Mooney, F. E. Yull, T. S. Blackwell, and M. R. Hamblin, "Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts," PLoS One 6, e22453 (2011).
- X. Gao and D. Xing, "Molecular mechanisms of cell proliferation induced by low power laser irradiation," J. Biomed. Sci. 16, 4 (2009).
- R. O. Poyton and K. A. Ball, "Therapeutic photobiomodulation: Nitric oxide and a novel function of mitochondrial cytochrome c oxidase," Discov. Med. 11, 154-159 (2011).
- Y. Y. Huang, S. K. Sharma, J. Carroll, and M. R. Hamblin, "Biphasic dose response in low level light therapy-An update," Dose-Response 9, 602-618 (2011).
- S. Mo, P. S. Chung, and J. C. Ahn, "630 nm-OLED accelerates wound healing in mice via regulation of cytokine release and genes expression of growth factors," Curr. Opt. Photon. 3, 485-495 (2019).
- S. Mo, E. Y. Kim, and J. C. Ahn, "Effects of 630-nm organic light-emitting diodes on antioxidant regulation and aging-related gene expression compared to light-emitting diodes of the same wavelength," Curr. Opt. Photon. 6, 227-235 (2022).
- R. M. Huertas, E. D. Luna-Bertos, J. Ramos-Torrecillas, F. M. Leyva, C. Ruiz, and O. Garcia-Martinez, "Effect and clinical implications of the low-energy diode laser on bone cell proliferation," Biol. Res. Nurs. 16, 191-196 (2014).
- A. Schindl, H. Merwald, L. Schindl, C. Kaun, and J. Wojta, "Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation," Br. J. Dermatol. 148, 334-336 (2003).
- A. C. Renno, P. A. McDonnell, M. C. Crovace, E. D. Zanotto, and L. Laakso, "Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on biosilicate® scaffolds," Photomed. Laser Surg. 28, 131-133 (2010).
- Q. Chen, J. Yang, H. Yin, Y. Li, H. Qiu, Y. Gu, H. Yang, D. Xiaoxi, S. Xiafei, B. Che, and H. Li, "Optimization of photobiomodulation therapy for wound healing of diabetic foot ulcers in vitro and in vivo," Biomed. Opt. Express 13, 2450-2466 (2022).
- S. George, M. R. Hamblin, and H. Abrahamse, "Effect of red light and near infrared laser on the generation of reactive oxygen species in primary dermal fibroblasts," J. Photochem. Photobiol. B 188, 60-68 (2018).
- R. Lubart, M. Eichler, R. Lavi, H. Friedman, and A. Shainberg, "Low-energy laser irradiation promotes cellular redox activity," Photomed. Laser Surg. 23, 3-9 (2005).
- R. Lavi, A. Shainberg, H. Friedmann, V. Shneyvays, O. Rickover, M. Eichler, D. Kaplan, and R. Lubart, "Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells," J. Biol. Chem. 278, 40917-40922 (2003).
- J. Zhang, D. Xing, and X. Gao, "Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway," J. Cell Physiol. 217, 518-528 (2008).
- Q. Sun, H.-E. Kim, H. Cho, S. Shi, B. Kim, and O. Kim, "Red light-emitting diode irradiation regulates oxidative stress and inflammation through SPHK1/NF-κB activation in human keratinocytes," J. Photochem. Photobiol. B 186, 31-40 (2018).
- M. Redza-Dutordoir and D. A. Averill-Bates, "Activation of apoptosis signalling pathways by reactive oxygen species," Biochim. Biophys. Acta-Mol. Cell Res. 1863, 2977-2992 (2016).
- F.-H. Li, Y.-Y. Liu, F. Qin, Q. Luo, H.-P. Yang, Q.-G. Zhang, and T. C.-Y. Liu, "Photobiomodulation on Bax and Bcl-2 proteins and SIRT1/PGC-1α axis mRNA expression levels of aging rat skeletal muscle," Int. J. Photoenergy 2014, 384816 (2014).
- F. S. T. Mirakabad, M. S. Khoramgah, F. Tahmasebinia, S. Darabi, S. Abdi, H. A. Abbaszadeh, and S. Khoshsirat, "The effect of low-level laser therapy and curcumin on the expression of LC3, ATG10 and BAX/BCL2 ratio in PC12 cells induced by 6-hydroxide dopamine," J. Lasers Med. Sci. 11, 299-304 (2020).
- F. Salehpour and S. H. Rasta, "The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder," Rev. Neurosci. 28, 441-453 (2017).
- L. P. da S. Sergio, A. M. C. Thome, L. A. da S. N. Trajano, S. C. Vicentini, A. F. Teixeira, A. L. Mencalha, F. de Paoli, and A. de S. da Fonseca, "Low-power laser alters mRNA levels from DNA repair genes in acute lung injury induced by sepsis in Wistar rats," Lasers Med. Sci. 34, 157-168 (2019).
- K. K. Yip, S. C. Lo, M. C. Leung, K. F. So, C. Y. Tang, and D. M. Poon, "The effect of low-energy laser irradiation on apoptotic factors following experimentally induced transient cerebral ischemia," Neuroscience 190, 301-306 (2011).
- D. R. Maldaner, V. F. Azzolin, F. Barbisan, M. H. Mastela, C. F. Teixeira, A. Dihel, T. Duarte, N. L. Pellenz, L. F. C. Lemos, C. M. U. Negretto, I. B. M. da Cruz, and M. M. M. F. Duarte, "In vitro effect of low-level laser therapy on the proliferative, apoptosis modulation, and oxi-inflammatory markers of premature-senescent hydrogen peroxide-induced dermal fibroblasts," Lasers Med. Sci. 34, 1333-1343 (2019).
- C. Communal, M. Sumandea, P. de Tombe, J. Narula, R. J. Solaro, and R. J. Hajjar, "Functional consequences of caspase activation in cardiac myocytes," Proc. Natl. Acad. Sci. USA 99, 6252-6256 (2002).
- S. H. Kaufmann, S. Desnoyers, Y. Ottaviano, N. E. Davidson, and G. G. Poirier, "Specific proteolytic cleavage of poly (ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis," Cancer Res. 53, 3976-3985 (1993).
- A. H. Boulares, A. G. Yakovlev, V. Ivanova, B. A. Stoica, G. Wang, S. Iyer, and M. Smulson, "Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis: Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells," J. Biol. Chem. 274, 22932-22940 (1999).
- F. Salehpour, N. Ahmadian, S. H. Rasta, M. Farhoudi, P. Karimi, and S. Sadigh-Eteghad, "Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice," Neurobiol. Aging 58, 140-150 (2017).
- H. J. Heo, H. J. Cho, B. Hong, H. K. Kim, E. K. Kim, B. G. Kim, and D. H. Shin, "Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against Abeta-induced oxidative stress in PC12 cells," Amyloid 8, 194-201 (2001).
- K. J. Trouba, H. K. Hamadeh, R. P. Amin, and D. R. Germolec, "Oxidative stress and its role in skin disease," Antioxid. Redox Signal. 4, 665-673 (2002).