DOI QR코드

DOI QR Code

Cell Death Inhibition Effect of Antioxidant Activity by 630 and 850 nm LEDs in RAW264.7 Cells

  • Hee Eun Kim (Department of Medicine, Graduate School of Medicine, Dankook University) ;
  • Eun Young Kim (Medical Laser Research Center, College of Medicine, Dankook University) ;
  • Jin Chul Ahn (Medical Laser Research Center, College of Medicine, Dankook University) ;
  • Sang Joon Mo (Center for Bio-Medical Engineering Core Facility, Dankook University)
  • Received : 2024.07.22
  • Accepted : 2024.08.28
  • Published : 2024.10.25

Abstract

This study objective was to evaluate the effects and mechanisms of low-level laser therapy in H2O2-induced cell death in mouse macrophage RAW264.7 cell. After irradiation with 630 and 850 nm wavelength diode lasers with an intensity of 10 mW/cm2 in RAW264.7 cells treated with 0.7 Mm H2O2, the effects and mechanisms of the two wavelengths on cell death inhibition were evaluated using MTT assay, ROS staining, TUNEL assay, flow cytometry analysis, and Western blot analysis. As a result, 630 or 850 nm light-emitting diodes (LED) were irradiated for 10 or 40 minutes to increase cell viability with H2O2 by about 1.7- or 1.6-fold, respectively. In addition, irradiation with two LEDs showed significant ROS scavenging effects, and TUNEL-positive cells were significantly reduced by 45.7% (630 nm) and 37.8% (850 nm) compared to cells treated with H2O2 alone. The Bax/Bcl-2 ratio of cells irradiated with both LEDs was significantly lower than that of cells treated with H2O2 only, and the expression of procaspase-3 and cleaved PARP was also significantly expressed in the direction of suppressing cell death. In conclusion, ROS scavenging activity by both LEDs irradiation leads to the expression of cell death pathway proteins in the direction of inhibiting cell death.

Keywords

Acknowledgement

All authors would like to acknowledge the support of the Undergraduate Research Program (URP) of the Korea Foundation for the Advancement of Science & Creativity (KOFAC), which helped conduct the research.

References

  1. W. Fiers, R. Beyaert, W. Declercq, and P. Vandenabeele, "More than one way to die: Apoptosis, necrosis and reactive oxygen damage," Oncogene 18, 7719-7730 (1999). 
  2. G. Benzi and A. Moretti, "Age- and peroxidative stress-related modifications of the cerebral enzymatic activities linked to mitochondria and the glutathione system," Free Radic. Biol. Med. 19, 77-101 (1995). 
  3. B. Budzynska, A. Boguszewska-Czubara, M. Kruk-Slomka, K. Skalicka-Wozniak, A. Michalak, I. Musik, and G. Biala, "Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice," Psychopharmacology 232, 931-942 (2015). 
  4. M. Valko, D. Leibfritz, J. Moncol, M. T. Cronin, M. Mazur, and J. Telser, "Free radicals and antioxidants in normal physiological functions and human disease," Int. J. Biochem. Cell Biol. 39, 44-84 (2007). 
  5. V. Heiskanen and M. R. Hamblin, "Photobiomodulation: Lasers vs. light emitting diodes?," Photochem. Photobiol. Sci. 17, 1003-1017 (2018). 
  6. K. R. Byrnes, R. W. Waynant, I. K. Ilev, X. Wu, L. Barna, K. Smith, R. Heckert, H. Gerst, and J. J. Anders, "Light promotes regeneration and functional recovery and alters the immune response after spinal cord injury," Lasers Surg. Med. 36, 171-185 (2005). 
  7. Y. Y. Huang, K. Nagata, C. E. Tedford, T. McCarthy, and M. R. Hamblin, "Low-level laser therapy (LLLT) reduces oxidative stress in primary cortical neurons in vitro," J. Biophotonics 6, 829-838 (2013). 
  8. M. R. Hamblin, "Shining light on the head: Photobiomodulation for brain disorders," BBA Clin. 6, 113-124 (2016). 
  9. M. R. Hamblin, "Mechanisms and mitochondrial redox signaling in photobiomodulation," Photochem. Photobiol. 94, 199-212 (2018). 
  10. L. F. de Freitas and M. R. Hamblin, "Proposed mechanisms of photobiomodulation or low-level light therapy," IEEE J. Sel. Top. Quantum Electron. 22, 7000417 (2016). 
  11. A. C. Chen, P. R. Arany, Y. Y. Huang, E. M. Tomkinson, S. K. Sharma, G. B. Kharkwal, T. Saleem, D. Mooney, F. E. Yull, T. S. Blackwell, and M. R. Hamblin, "Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts," PLoS One 6, e22453 (2011). 
  12. X. Gao and D. Xing, "Molecular mechanisms of cell proliferation induced by low power laser irradiation," J. Biomed. Sci. 16, 4 (2009). 
  13. R. O. Poyton and K. A. Ball, "Therapeutic photobiomodulation: Nitric oxide and a novel function of mitochondrial cytochrome c oxidase," Discov. Med. 11, 154-159 (2011). 
  14. Y. Y. Huang, S. K. Sharma, J. Carroll, and M. R. Hamblin, "Biphasic dose response in low level light therapy-An update," Dose-Response 9, 602-618 (2011). 
  15. S. Mo, P. S. Chung, and J. C. Ahn, "630 nm-OLED accelerates wound healing in mice via regulation of cytokine release and genes expression of growth factors," Curr. Opt. Photon. 3, 485-495 (2019). 
  16. S. Mo, E. Y. Kim, and J. C. Ahn, "Effects of 630-nm organic light-emitting diodes on antioxidant regulation and aging-related gene expression compared to light-emitting diodes of the same wavelength," Curr. Opt. Photon. 6, 227-235 (2022). 
  17. R. M. Huertas, E. D. Luna-Bertos, J. Ramos-Torrecillas, F. M. Leyva, C. Ruiz, and O. Garcia-Martinez, "Effect and clinical implications of the low-energy diode laser on bone cell proliferation," Biol. Res. Nurs. 16, 191-196 (2014). 
  18. A. Schindl, H. Merwald, L. Schindl, C. Kaun, and J. Wojta, "Direct stimulatory effect of low-intensity 670 nm laser irradiation on human endothelial cell proliferation," Br. J. Dermatol. 148, 334-336 (2003). 
  19. A. C. Renno, P. A. McDonnell, M. C. Crovace, E. D. Zanotto, and L. Laakso, "Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on biosilicate® scaffolds," Photomed. Laser Surg. 28, 131-133 (2010). 
  20. Q. Chen, J. Yang, H. Yin, Y. Li, H. Qiu, Y. Gu, H. Yang, D. Xiaoxi, S. Xiafei, B. Che, and H. Li, "Optimization of photobiomodulation therapy for wound healing of diabetic foot ulcers in vitro and in vivo," Biomed. Opt. Express 13, 2450-2466 (2022). 
  21. S. George, M. R. Hamblin, and H. Abrahamse, "Effect of red light and near infrared laser on the generation of reactive oxygen species in primary dermal fibroblasts," J. Photochem. Photobiol. B 188, 60-68 (2018). 
  22. R. Lubart, M. Eichler, R. Lavi, H. Friedman, and A. Shainberg, "Low-energy laser irradiation promotes cellular redox activity," Photomed. Laser Surg. 23, 3-9 (2005). 
  23. R. Lavi, A. Shainberg, H. Friedmann, V. Shneyvays, O. Rickover, M. Eichler, D. Kaplan, and R. Lubart, "Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells," J. Biol. Chem. 278, 40917-40922 (2003). 
  24. J. Zhang, D. Xing, and X. Gao, "Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway," J. Cell Physiol. 217, 518-528 (2008). 
  25. Q. Sun, H.-E. Kim, H. Cho, S. Shi, B. Kim, and O. Kim, "Red light-emitting diode irradiation regulates oxidative stress and inflammation through SPHK1/NF-κB activation in human keratinocytes," J. Photochem. Photobiol. B 186, 31-40 (2018). 
  26. M. Redza-Dutordoir and D. A. Averill-Bates, "Activation of apoptosis signalling pathways by reactive oxygen species," Biochim. Biophys. Acta-Mol. Cell Res. 1863, 2977-2992 (2016). 
  27. F.-H. Li, Y.-Y. Liu, F. Qin, Q. Luo, H.-P. Yang, Q.-G. Zhang, and T. C.-Y. Liu, "Photobiomodulation on Bax and Bcl-2 proteins and SIRT1/PGC-1α axis mRNA expression levels of aging rat skeletal muscle," Int. J. Photoenergy 2014, 384816 (2014). 
  28. F. S. T. Mirakabad, M. S. Khoramgah, F. Tahmasebinia, S. Darabi, S. Abdi, H. A. Abbaszadeh, and S. Khoshsirat, "The effect of low-level laser therapy and curcumin on the expression of LC3, ATG10 and BAX/BCL2 ratio in PC12 cells induced by 6-hydroxide dopamine," J. Lasers Med. Sci. 11, 299-304 (2020). 
  29. F. Salehpour and S. H. Rasta, "The potential of transcranial photobiomodulation therapy for treatment of major depressive disorder," Rev. Neurosci. 28, 441-453 (2017). 
  30. L. P. da S. Sergio, A. M. C. Thome, L. A. da S. N. Trajano, S. C. Vicentini, A. F. Teixeira, A. L. Mencalha, F. de Paoli, and A. de S. da Fonseca, "Low-power laser alters mRNA levels from DNA repair genes in acute lung injury induced by sepsis in Wistar rats," Lasers Med. Sci. 34, 157-168 (2019). 
  31. K. K. Yip, S. C. Lo, M. C. Leung, K. F. So, C. Y. Tang, and D. M. Poon, "The effect of low-energy laser irradiation on apoptotic factors following experimentally induced transient cerebral ischemia," Neuroscience 190, 301-306 (2011). 
  32. D. R. Maldaner, V. F. Azzolin, F. Barbisan, M. H. Mastela, C. F. Teixeira, A. Dihel, T. Duarte, N. L. Pellenz, L. F. C. Lemos, C. M. U. Negretto, I. B. M. da Cruz, and M. M. M. F. Duarte, "In vitro effect of low-level laser therapy on the proliferative, apoptosis modulation, and oxi-inflammatory markers of premature-senescent hydrogen peroxide-induced dermal fibroblasts," Lasers Med. Sci. 34, 1333-1343 (2019). 
  33. C. Communal, M. Sumandea, P. de Tombe, J. Narula, R. J. Solaro, and R. J. Hajjar, "Functional consequences of caspase activation in cardiac myocytes," Proc. Natl. Acad. Sci. USA 99, 6252-6256 (2002). 
  34. S. H. Kaufmann, S. Desnoyers, Y. Ottaviano, N. E. Davidson, and G. G. Poirier, "Specific proteolytic cleavage of poly (ADP-ribose) polymerase: An early marker of chemotherapy-induced apoptosis," Cancer Res. 53, 3976-3985 (1993). 
  35. A. H. Boulares, A. G. Yakovlev, V. Ivanova, B. A. Stoica, G. Wang, S. Iyer, and M. Smulson, "Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis: Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells," J. Biol. Chem. 274, 22932-22940 (1999). 
  36. F. Salehpour, N. Ahmadian, S. H. Rasta, M. Farhoudi, P. Karimi, and S. Sadigh-Eteghad, "Transcranial low-level laser therapy improves brain mitochondrial function and cognitive impairment in D-galactose-induced aging mice," Neurobiol. Aging 58, 140-150 (2017).
  37. H. J. Heo, H. J. Cho, B. Hong, H. K. Kim, E. K. Kim, B. G. Kim, and D. H. Shin, "Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against Abeta-induced oxidative stress in PC12 cells," Amyloid 8, 194-201 (2001). 
  38. K. J. Trouba, H. K. Hamadeh, R. P. Amin, and D. R. Germolec, "Oxidative stress and its role in skin disease," Antioxid. Redox Signal. 4, 665-673 (2002).