DOI QR코드

DOI QR Code

Crack identification in beam-like structures using multi-mass system and wavelet transform

  • Siamak Ghadimi (Department of Civil Engineering, Faculty of Engineering, Urmia University) ;
  • Seyed Sina Kourehli (Department of Civil Engineering, Azarbaijan Shahid Madani University) ;
  • Gholamreza Zamani-Ahari (Department of Civil Engineering, Faculty of Engineering, Urmia University)
  • Received : 2024.05.14
  • Accepted : 2024.07.19
  • Published : 2024.10.25

Abstract

This research introduces a new composite system that utilizes multiple moving masses to identify cracks in structures resembling beams. The process starts by recording displacement time data from a set of these moving masses and converting this information into a relative time history through weighted aggregation. This relative time history then undergoes wavelet transform analysis to precisely locate cracks. Following wavelet examinations, specific points along the beam are determined as potential crack sites. These points, along with locations on the beam susceptible to cracked point due to support conditions, are marked as crack locations within the optimization algorithm's search domain. The model uses equations of motion based on the finite element method for the moving masses on the beam and employs the Runge-Kutta numerical solution within the state space. The proposed system consists of three successive moving masses positioned at even intervals along the beam. To assess its effectiveness, the method is tested on two examples: a simply supported beam and a continuous beam, each having three scenarios to simulate the presence of one or multiple cracks. Additionally, another example investigates the influence of mass speed, spacing between masses, and noise effect. The outcomes showcase the method's effectiveness and efficiency in localizing crack, even in the presence of noise effect in 1%, 5% and 20%.

Keywords

References

  1. An, N., Xia, H. and Zhan, J. (2010), "Identification of beam crack using the dynamic response of a moving spring-mass unit", Interact. Multiscale Mech., 3(4), 321-331. http://doi.org/10.12989/imm.2010.3.4.321.
  2. Ariaei, A., Ziaei-Rad, S. and Ghayour, M. (2009), "Vibration Analysis of beams with open and breathing cracks subjected to moving masses", J. Sound Vib., 326(3-5), 709-724. http://doi.org/10.1016/j.jsv.2009.05.013.
  3. Attar, M., Karrech, A. and Regenauer-Lieb, K. (2017), "Dynamic response of cracked timoshenko beams on elastic foundations under moving harmonic loads", J. Sound Vib. Control, 23(3), 432-457. http://doi.org/10.1177/1077546315580470.
  4. Attar, M. (2012) "A transfer matrix method for free vibration analysis and crack identification of stepped beams with multiple edge cracks and different boundary conditions", Int. J. Mech. Sci., 57(1), 19-33. http://doi.org/10.1016/j.ijmecsci.2012.01.010.
  5. Bagheri, A. and Kourehli, S. (2013), "Damage detection of structures under earthquake excitation using discrete wavelet analysis", Asian J. Civil Eng., 14(2), 289-304.
  6. Biondi, B. and Caddemi, S. (2005), "Closed form solutions of euler-bernoulli beams with singularities", Int. J. Solids Struct., 42(9-10), 3027-3044. http://doi.org/10.1016/j.ijsolstr.2004.09.048.
  7. Caddemi, S. and Calio, I. (2009), "Exact closed-form solution for the vibration modes of the euler-bernoulli beam with multiple open cracks", J. Sound Vib., 327(3-5), 473-489. http://doi.org/10.1016/j.jsv.2009.07.008.
  8. Caddemi, S., Calio, I. and Cannizzaro, F. (2013), "Closed-form solutions for stepped timoshenko beams with internal singularities and along-axis external supports", Arch. Appl. Mech., 83, 559-577. http://doi.org/10.1007/s00419-012-0704-7.
  9. Dimarogonas, A.D. (1996), "Vibration of cracked structures: A state of the art review", Eng. Fract. Mech., 55(5), 831-857. http://doi.org/10.1016/0013-7944(94)00175-8.
  10. Eberhart, J. and Kennedy, R. (1995), "Particle swarm optimization", Proceedings of ICNN'95-International Conference on Neural Networks, Perth, WA, Australia, November-December.
  11. Ghadimi, S. and Kourehli, S.S. (2016), "Multiple crack identification in euler beams using extreme learning machine", KSCE J. Civil Eng., 21(1), 389-396. http://doi.org/10.1007/s12205-016-1078-0.
  12. Ghadimi, S. and Kourehli, S.S. (2017), "Multiple crack identification in euler beams using extreme learning machine", KSCE J. Civil Eng., 21(1), 389-396. http://doi.org/10.1007/S12205-016-1078-0/METRICS.
  13. Hajizadeh, A.R., Salajegheh, E. and Salajegheh, J. (2016), "2-D discrete wavelet-based crack detection using static and dynamic responses in plate structures", Asian J. Civil Eng., 17(6), 713-735.
  14. Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J. Appl. Mech., 24(3), 361-364. http://doi.org/10.1115/1.4011547.
  15. Irwin, G.R. and Kies, J.A. (1952), "Fracturing and fracture dynamics", Weld. J. Res. Suppl., 31, 958.
  16. Kennedy, R. and Eberhart, J. (1995), "A new optimizer using particle swarm theory", MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, October.
  17. Khaji, N. and Mehrjoo, M. (2014), "Crack detection in a beam with an arbitrary number of transverse cracks using genetic algorithms", J. Mech. Sci. Technol., 28(3), 823-836. http://doi.org/10.1007/s12206-013-1147-y.
  18. Kim, K., Kim, S., Sok, K., Pak, C. and Han, K. (2018), "A modeling method for vibration analysis of cracked beam with arbitrary boundary condition", J. Ocean Eng. Sci., 3(4), 367-381. http://doi.org/10.1016/j.joes.2018.11.003.
  19. Kourehli, S.S., Ghadimi, S. and Ghadimi, R. (2018), "Crack identification in timoshenko beam under moving mass using RELM", Steel Compos. Struct., 28(3), 279-288. http://doi.org/10.12989/scs.2018.28.3.279.
  20. Kourehli, S.S., Ghadimi, S. and Ghadimi, R. (2019), "Vibration analysis and identification of breathing cracks in beams subjected to single or multiple moving mass using online sequential extreme learning machine", Inverse Probl. Sci. Eng., 27(8), 1057-1080. http://doi.org/10.1080/17415977.2018.1479407.
  21. Malekjafarian, A., Golpayegani, F., Moloney, C. and Clarke, S. (2019), "A machine learning approach to bridge-damage detection using responses measured on a passing vehicle", Sensors, 19(18), 4035. http://doi.org/10.3390/s19184035.
  22. Mehrjoo, M., Khaji, N. and Ghafory-Ashtiany, M (2013), "Application of genetic algorithm in crack detection of beamlike structures using a new cracked Euler-Bernoulli beam element", Appl. Soft Comput. J., 13(2), 867-880. http://doi.org/10.1016/j.asoc.2012.09.014.
  23. Nguyen, Q.T. and Livaoglu, R. (2022), "Damage detection at storey and element levels of high-rise buildings: A hybrid method", Neural Comput. Appl., 34(15), 12765-12788. http://doi.org/10.1007/s00521-022-07111-w.
  24. Nguyen, Q.T. and Livaoglu, R. (2023), "ANN-based averaging scheme for damage detection of high-rise buildings under noisy conditions", Struct., 58, 105587. http://doi.org/10.1016/J.ISTRUC.2023.105587.
  25. Pansare, S.R. and Naik, S.S. (2019), "Detection of inclined edge crack in prismatic beam using static deflection measurements", Sadhana - Acad. Proc. Eng. Sci., 44, 1-7. http://doi.org/10.1007/s12046-018-1007-7.
  26. Paral, A., Singha Roy, D.K. and Samanta, A.K. (2019), "Application of a mode shape derivative-based damage index in artificial neural network for structural damage identification in shear frame building", J. Civil Struct. Health Monit., 9(3), 411-423. http://doi.org/10.1007/s13349-019-00342-x.
  27. Park, P., Huh, Y.H., Kim, D.J. and Son, B.J. (2006), "Crack detection by static measurement in steel beams", Key Eng. Mater., 321, 394-399. http://doi.org/10.4028/www.scientific.net/kem.321-323.394.
  28. Perez, R.E. and Behdinan, K. (2007), "Particle swarm approach for structural design optimization", Comput. Struct., 85(19-20), 1579-1588. http://doi.org/10.1016/j.compstruc.2006.10.013.
  29. Yang, Y.B. and Yang, J.P. (2018), "State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles", Int. J. Struct. Stab. Dyn., 18(2), 1850025. http://doi.org/10.1142/S0219455418500256.