Acknowledgement
This work is supported by National Program on Key R&D Project of China (2022YFE0210500) and Open Research Project of China-Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of Major Infrastructures.
References
- Abdullah, A. and Bailey, C.G. (2018), "Punching behaviour of column-slab connection strengthened with non-prestressed or prestressed FRP plates", Eng. Struct., 160, 229-242. https://doi.org/10.1016/j.engstruct.2018.01.030.
- AISC-LRFD (2010), Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
- Argyroudis, S.A. and Mitoulis, S.A. (2021), "Vulnerability of bridges to individual and multiple hazards-floods and earthquakes", Reliab. Eng. Syst. Saf., 210, 107564. https://doi.org/10.1016/j.ress.2021.107564.
- Azariani, H.R., Esfahani, M.R. and Shariatmadar, H. (2018), "Behavior of exterior concrete beam-column joints reinforced with shape memory alloy (SMA) bars", Steel Compos. Struct., 28(1), 83-98. https://doi.org/10.12989/scs.2018.28.1.083.
- Cao, Z.L., Guo, T. and Xu, Z.K. (2015), "Theoretical analysis of self-centering concrete piers with external dissipators", Earthq. Struct., 9(6), 1313-1336. https://doi.org/10.12989/eas.2015.9.6.1313.
- Deng, Z.C., Daud, J.R. and Li, H. (2014), "Seismic behavior of short concrete columns with prestressing steel wires", Adv. Mater. Sci. Eng., 2014, 180193. https://doi.org/10.1155/2014/180193.
- Europe Code 4 (2004) Design of Steel and Concrete Structures, Part 1.1: General Rules and Rules for Building, European Committee for Standardization, Brussels, Belgium.
- GB 50010-2010 (2015), Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
- GB/T 700-2006 (2006), Carbon Structural Steels, Standardization Administration of China, Beijing, China.
- Guerrini, G., Restrepo, J.I., Massari, M. and Vervelidis, A. (2015), "Seismic behavior of posttensioned self-centering precast concrete dual-shell steel columns", J. Struct. Eng., 141(4), 04014115. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001054.
- Guo, M.Q., Men, J.J., Fan, D.X. and Shen, Y.L. (2022), "Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system", Earthq. Struct., 23(3), 271-282. https://doi.org/10.12989/eas.2022.23.3.271.
- Guo, T., Cao, Z., Xu, Z. and Lu, S. (2016), "Cyclic load tests on self-centering concrete pier with external dissipators and enhanced durability", J. Struct. Eng., 142(1), 04015088. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001357.
- Lee, D., Han, S.J., Ju, H. and Kim, K.S. (2021), "Shear strength of prestressed concrete beams considering bond mechanism in reinforcement", ACI Struct. J., 118(3), 267-277. https://doi.org/10.14359/51720203.
- Li, G.C., Liu, D., Yang, Z.J. and Zhang, C.Y. (2017), "Flexural behavior of high strength concrete filled high strength square steel tube", J. Constr. Steel Res., 128, 732-744. https://doi.org/10.1016/j.jcsr.2016.10.007.
- Li, Y., Cao, S. and Jing, D. (2017), "Analytical compressive stress-strain model for concrete confined with high-strength multiple-tied-spiral transverse reinforcement", Struct. Des. Tall Spec. Build., 27(2), e1416. https://doi.org/10.1002/tal.1416.
- Moustafa, A. and Elgawady, M.A. (2018), "Shaking table testing of segmental hollow-core FRP-concrete-steel bridge columns", J. Bridge Eng., 23(5), 04018020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001238.
- Nguyen, V., Ahn, J.H., Haldar, A. and Huh, J. (2022), "Fragility-based seismic performance assessment of modular underground arch bridges", Struct., 39(2022), 1218-1230. https://doi.org/10.1016/j.istruc.2022.04.005.
- Nikbakht, E., Rashid, K., Mohseni, I. and Hejazi, F. (2015), "Evaluating seismic demands for segmental columns with low energy dissipation capacity", Earthq. Struct., 8(6), 1277-1297. https://doi.org/10.12989/eas.2015.8.6.1277.
- Perdomo, C. Monteiro, R. and Sucuoglu, H. (2022), "Development of fragility curves for single-column RC Italian bridges using nonlinear static analysis", J. Earthq. Eng., 26(5), 2328-2352. https://doi.org/10.1080/13632469.2020.1760153.
- Qi, J., Ma, Z.J., Wang, J. and Bao, Y. (2020), "Post-cracking shear behaviour of concrete beams strengthened with externally prestressed tendons", Struct., 23, 214-224. https://doi.org/10.1016/j.istruc.2019.09.009.
- Qian, J.R., Cui, Y. and Fang, X.D. (2007), "Shear strength tests of concrete filled steel tube columns", Chin. Civil Eng. J., 40(5), 1-9.
- Seo, J. and Linzell, D.G. (2012), "Horizontally curved steel bridge seismic vulnerability assessment", Eng. Struct., 34(2012), 21-32. https://doi.org/10.1016/j.engstruct.2011.09.008.
- Shi, G., Zhu, X. and Ban, H. (2016), "Material properties and partial factors for resistance of high-strength steels in China", J. Constr. Steel Res, 121, 65-79. https://doi.org/10.1016/j.jcsr.2016.01.012.
- Shi, X., Guo, T., Song, L.L. and Yang, J. (2023), "Cyclic load tests and finite element modeling of self-centering hollow-core FRP-concrete-steel bridge columns", Alexandria Eng. J., 70, 301-314. https://doi.org/10.1016/j.aej.2023.03.001.
- Shi, Y., Yuan, G.L. and Zhu, H. (2022), "Effect of axial compression ratio on seismic and self-centering performance of unbonded prestressed concrete columns", Adv. Civil Eng., 2022, 7346620. https://doi.org/10.3390/app12094729.
- T/CECS 18 (2019), Technical Specification for Steel Tube-Reinforced Concrete Column Structures, China Association for Engineering Construction, Beijing, China.
- Tang, Y., Wu, G., Sun, Z.Y., and Zhang, Y.F. (2019), "Seismic performance of underwater bridge columns strengthened with prestressed-concrete panels and FRP reinforcement", J. Compos. Constr., 23(3), 04019019. https://doi.org/10.1061/(ASCE)CC.1943-5614.000094.
- Thapa, D. and Pantelides, C.P. (2021), "Self-centering bridge bent with stretch length anchors as a tension-only hysteretic hybrid system", J. Struct. Eng., 147(10), 04021163. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003146.
- Thonstad, T., Mantawy, I.F., Stanton, J.F. and Eberhard, M.O. (2016), "Shaking table performance of a new bridge system with pretensioned rocking columns", J. Bridge Eng., 21(4), 04015079. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000867.
- Wang, Z.Q., Song, W., Wang, Y.Y. and Wei, H.Y. (2011), "Numerical analytical model for seismic behavior of prestressing concrete bridge column systems", Proc. Eng., 14, 2333-2340. https://doi.org/10.1016/j.proeng.2011.07.294.
- Wei, Y.F. (2013), "Experimental study on Seismic performance of RC short column retrofitted by prestressed steel strip", Master Dissertation, Xi'an University of Architecture and Technology, Xi'an, Shanxi, China.
- Xu, C., Xiao, C., Cai, S. and Luo, Y. (2005), "Experimental research on shear resistance of concrete-filled steel tube", Fourth International Conference on Advances in Steel Structures, Shanghai, China, June.
- Yang, Y., Zhao, F., Liu, Y. and Xue, J.Y. (2013), "Experimental study on reinforced concrete column retrofitted by prestressed steel strips", Industr. Constr., 43(2), 45-48.
- Yuen, T.Y., Halder, R., Chen, W.W., Zhou, X., Deb, T., Liu, Y., ... and Wen, T.H. (2020), "DFEM of a post-tensioned precast concrete segmental bridge with unbonded external tendons subjected to prestress changes", Struct., 28(10), 1322-1337. https://doi.org/10.1016/j.istruc.2020.09.080.
- Zeng, Z.W., Huang, Y.H., Chen, B.J. and Tan, D.R. (2022), "Experimental study on bearing capacity of short columns with high-strength concrete-filled high strength steel tubes under axial loading", Build. Struct., 52(18), 72-77.