DOI QR코드

DOI QR Code

Experimental study on behavior of tri-directional prestressed composite bridge column under low cyclic loading

  • Yang Chen (School of Mechanics and Engineering Science, Shanghai University) ;
  • Zhaowei Jiang (School of Mechanics and Engineering Science, Shanghai University) ;
  • Yingjun Gan (School of Digital Construction, Shanghai Urban Construction Vocational College) ;
  • Jun Ye (Xi'an University of Architecture & Technology Engineering Technology Co., Ltd) ;
  • Yong Yang (State Key Laboratory of Green Building, Xi'an University of Architecture & Technology)
  • Received : 2023.08.06
  • Accepted : 2024.05.16
  • Published : 2024.10.25

Abstract

To improve the seismic behavior of composite column with high strength concrete-filled steel tubular in bridge engineering, four column specimens, including one specimen with vertical prestressing force and three specimens with tri-directional prestressing force, were conducted under low cyclic loading. Test parameters including axial compression ratio, degree of vertical prestressing and existence of prestressed steel strips were emphatically analyzed. Experimental results revealed that applying tri-directional prestressing force to column with high strength concrete-filled steel tubular produced more beneficial behavior in terms of ductility, energy-dissipation and self-centering capacity over that of specimens only with vertical prestress. Moreover, ultimate bearing capacity of composite column was improved with increase of degree of vertical prestress and external axial force, while ductility would be reduced. External axial force showed slight influence on the self-centering behavior. Finally, a calculation equation for predicting the shear capacity of the tri-directional prestressed composite column was proposed and the accuracy of the calculated results validated by experimental data.

Keywords

Acknowledgement

This work is supported by National Program on Key R&D Project of China (2022YFE0210500) and Open Research Project of China-Pakistan Belt and Road Joint Laboratory on Smart Disaster Prevention of Major Infrastructures.

References

  1. Abdullah, A. and Bailey, C.G. (2018), "Punching behaviour of column-slab connection strengthened with non-prestressed or prestressed FRP plates", Eng. Struct., 160, 229-242. https://doi.org/10.1016/j.engstruct.2018.01.030.
  2. AISC-LRFD (2010), Load and Resistance Factor Design Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL, USA.
  3. Argyroudis, S.A. and Mitoulis, S.A. (2021), "Vulnerability of bridges to individual and multiple hazards-floods and earthquakes", Reliab. Eng. Syst. Saf., 210, 107564. https://doi.org/10.1016/j.ress.2021.107564.
  4. Azariani, H.R., Esfahani, M.R. and Shariatmadar, H. (2018), "Behavior of exterior concrete beam-column joints reinforced with shape memory alloy (SMA) bars", Steel Compos. Struct., 28(1), 83-98. https://doi.org/10.12989/scs.2018.28.1.083.
  5. Cao, Z.L., Guo, T. and Xu, Z.K. (2015), "Theoretical analysis of self-centering concrete piers with external dissipators", Earthq. Struct., 9(6), 1313-1336. https://doi.org/10.12989/eas.2015.9.6.1313.
  6. Deng, Z.C., Daud, J.R. and Li, H. (2014), "Seismic behavior of short concrete columns with prestressing steel wires", Adv. Mater. Sci. Eng., 2014, 180193. https://doi.org/10.1155/2014/180193.
  7. Europe Code 4 (2004) Design of Steel and Concrete Structures, Part 1.1: General Rules and Rules for Building, European Committee for Standardization, Brussels, Belgium.
  8. GB 50010-2010 (2015), Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development of the People's Republic of China, Beijing, China.
  9. GB/T 700-2006 (2006), Carbon Structural Steels, Standardization Administration of China, Beijing, China.
  10. Guerrini, G., Restrepo, J.I., Massari, M. and Vervelidis, A. (2015), "Seismic behavior of posttensioned self-centering precast concrete dual-shell steel columns", J. Struct. Eng., 141(4), 04014115. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001054.
  11. Guo, M.Q., Men, J.J., Fan, D.X. and Shen, Y.L. (2022), "Seismic behavior and design method of socket self-centering bridge pier with hybrid energy dissipation system", Earthq. Struct., 23(3), 271-282. https://doi.org/10.12989/eas.2022.23.3.271.
  12. Guo, T., Cao, Z., Xu, Z. and Lu, S. (2016), "Cyclic load tests on self-centering concrete pier with external dissipators and enhanced durability", J. Struct. Eng., 142(1), 04015088. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001357.
  13. Lee, D., Han, S.J., Ju, H. and Kim, K.S. (2021), "Shear strength of prestressed concrete beams considering bond mechanism in reinforcement", ACI Struct. J., 118(3), 267-277. https://doi.org/10.14359/51720203.
  14. Li, G.C., Liu, D., Yang, Z.J. and Zhang, C.Y. (2017), "Flexural behavior of high strength concrete filled high strength square steel tube", J. Constr. Steel Res., 128, 732-744. https://doi.org/10.1016/j.jcsr.2016.10.007.
  15. Li, Y., Cao, S. and Jing, D. (2017), "Analytical compressive stress-strain model for concrete confined with high-strength multiple-tied-spiral transverse reinforcement", Struct. Des. Tall Spec. Build., 27(2), e1416. https://doi.org/10.1002/tal.1416.
  16. Moustafa, A. and Elgawady, M.A. (2018), "Shaking table testing of segmental hollow-core FRP-concrete-steel bridge columns", J. Bridge Eng., 23(5), 04018020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001238.
  17. Nguyen, V., Ahn, J.H., Haldar, A. and Huh, J. (2022), "Fragility-based seismic performance assessment of modular underground arch bridges", Struct., 39(2022), 1218-1230. https://doi.org/10.1016/j.istruc.2022.04.005.
  18. Nikbakht, E., Rashid, K., Mohseni, I. and Hejazi, F. (2015), "Evaluating seismic demands for segmental columns with low energy dissipation capacity", Earthq. Struct., 8(6), 1277-1297. https://doi.org/10.12989/eas.2015.8.6.1277.
  19. Perdomo, C. Monteiro, R. and Sucuoglu, H. (2022), "Development of fragility curves for single-column RC Italian bridges using nonlinear static analysis", J. Earthq. Eng., 26(5), 2328-2352. https://doi.org/10.1080/13632469.2020.1760153.
  20. Qi, J., Ma, Z.J., Wang, J. and Bao, Y. (2020), "Post-cracking shear behaviour of concrete beams strengthened with externally prestressed tendons", Struct., 23, 214-224. https://doi.org/10.1016/j.istruc.2019.09.009.
  21. Qian, J.R., Cui, Y. and Fang, X.D. (2007), "Shear strength tests of concrete filled steel tube columns", Chin. Civil Eng. J., 40(5), 1-9.
  22. Seo, J. and Linzell, D.G. (2012), "Horizontally curved steel bridge seismic vulnerability assessment", Eng. Struct., 34(2012), 21-32. https://doi.org/10.1016/j.engstruct.2011.09.008.
  23. Shi, G., Zhu, X. and Ban, H. (2016), "Material properties and partial factors for resistance of high-strength steels in China", J. Constr. Steel Res, 121, 65-79. https://doi.org/10.1016/j.jcsr.2016.01.012.
  24. Shi, X., Guo, T., Song, L.L. and Yang, J. (2023), "Cyclic load tests and finite element modeling of self-centering hollow-core FRP-concrete-steel bridge columns", Alexandria Eng. J., 70, 301-314. https://doi.org/10.1016/j.aej.2023.03.001.
  25. Shi, Y., Yuan, G.L. and Zhu, H. (2022), "Effect of axial compression ratio on seismic and self-centering performance of unbonded prestressed concrete columns", Adv. Civil Eng., 2022, 7346620. https://doi.org/10.3390/app12094729.
  26. T/CECS 18 (2019), Technical Specification for Steel Tube-Reinforced Concrete Column Structures, China Association for Engineering Construction, Beijing, China.
  27. Tang, Y., Wu, G., Sun, Z.Y., and Zhang, Y.F. (2019), "Seismic performance of underwater bridge columns strengthened with prestressed-concrete panels and FRP reinforcement", J. Compos. Constr., 23(3), 04019019. https://doi.org/10.1061/(ASCE)CC.1943-5614.000094.
  28. Thapa, D. and Pantelides, C.P. (2021), "Self-centering bridge bent with stretch length anchors as a tension-only hysteretic hybrid system", J. Struct. Eng., 147(10), 04021163. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003146.
  29. Thonstad, T., Mantawy, I.F., Stanton, J.F. and Eberhard, M.O. (2016), "Shaking table performance of a new bridge system with pretensioned rocking columns", J. Bridge Eng., 21(4), 04015079. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000867.
  30. Wang, Z.Q., Song, W., Wang, Y.Y. and Wei, H.Y. (2011), "Numerical analytical model for seismic behavior of prestressing concrete bridge column systems", Proc. Eng., 14, 2333-2340. https://doi.org/10.1016/j.proeng.2011.07.294.
  31. Wei, Y.F. (2013), "Experimental study on Seismic performance of RC short column retrofitted by prestressed steel strip", Master Dissertation, Xi'an University of Architecture and Technology, Xi'an, Shanxi, China.
  32. Xu, C., Xiao, C., Cai, S. and Luo, Y. (2005), "Experimental research on shear resistance of concrete-filled steel tube", Fourth International Conference on Advances in Steel Structures, Shanghai, China, June.
  33. Yang, Y., Zhao, F., Liu, Y. and Xue, J.Y. (2013), "Experimental study on reinforced concrete column retrofitted by prestressed steel strips", Industr. Constr., 43(2), 45-48.
  34. Yuen, T.Y., Halder, R., Chen, W.W., Zhou, X., Deb, T., Liu, Y., ... and Wen, T.H. (2020), "DFEM of a post-tensioned precast concrete segmental bridge with unbonded external tendons subjected to prestress changes", Struct., 28(10), 1322-1337. https://doi.org/10.1016/j.istruc.2020.09.080.
  35. Zeng, Z.W., Huang, Y.H., Chen, B.J. and Tan, D.R. (2022), "Experimental study on bearing capacity of short columns with high-strength concrete-filled high strength steel tubes under axial loading", Build. Struct., 52(18), 72-77.