DOI QR코드

DOI QR Code

Seismic response of operational tunnels to earthquakes with foreshocks or aftershocks

  • Junyoung Lee (Department of Urban and Environmental Engineering, UNIST) ;
  • Jae-Kwang Ahn (Earthquake and Volcano Bureau, Korea Meteorological Administration) ;
  • Byungmin Kim (Department of Urban and Environmental Engineering, UNIST)
  • 투고 : 2023.11.22
  • 심사 : 2024.02.24
  • 발행 : 2024.09.25

초록

In designing earthquake-resistant structures, we traditionally select dynamic loads based on the recurrence period of earthquakes, using individual seismic records or aligning them with the design spectrum. However, these records often represent isolated waveforms lacking continuity, underscoring the need for a deeper understanding of natural seismic phenomena. The Earth's crustal movement, both before and after a significant earthquake, can trigger a series of both minor and major seismic events. These minor earthquakes, which often occur in short time before or after the major seismic events, prompt a critical reassessment of their potential impact on structural design. In this study, we conducted a detailed tunnel response analysis to assess the impact of both single mainshock and multiple earthquake scenarios (including foreshock-mainshock and mainshock-aftershock sequences). Utilizing numerical analysis, we explored how multiple earthquakes affect tunnel deformation. Our findings reveal that sequential seismic events, even those of moderate magnitude, can exert considerable stress on tunnel lining, resulting in heightened bending stress and permanent displacement. This research highlights a significant insight: current seismic design methodologies, which predominantly focus on the largest seismic intensity, may fail to account for the cumulative impact of smaller, yet frequent, seismic events like foreshocks and aftershocks. Our results demonstrate that dynamic analyses considering only a single mainshock are likely to underestimate the potential damage (i.e., ovaling deformation, failure lining, permanent displacement etc.) when compared to analyses that incorporate multiple earthquake scenarios.

키워드

과제정보

The research described in this paper is financially supported by the Natural Science Foundation Korea Meteorological Administration (KMI2021-01910).

참고문헌

  1. Ahn, J.K., Park, D.; Kim, D.G. and Kim, K.Y. (2013), "Evaluation of seismic performance of road tunnels in operation", J. Korean Tunn. Undergr. Sp. Assoc., 15(2), 69-80, (in Korean). https://doi.org/10.9711/KTAJ.2013.15.2.069.
  2. Ahn, J.K., Byun Y., Lee, G. and Lee, S. (2018), "A proposal of simple evaluation on the seismic performance of tunnel lining", J. Korean Tunn. Undergr. Sp. Assoc., 20(2), 361-374, (in Korean). https://doi.org/10.9711/KTAJ.2018.20.2.361.
  3. Ahn, J.K., Park, E., Kim, B., Hwang, E.H. and Hong, S. (2023), "Stable operation process of earthquake early warning system based on machine learning: trial test and management perspective", Front. Earth Sci., 11, 1157742. https://doi.org/10.3389/feart.2023.1157742.
  4. Al Atik, L. and Abrahamson, N. (2010), "An improved method for nonstationary spectral matching", Earthq. Spectra, 26(3), 601-617. https://doi.org/10.1193/1.345915.
  5. Aydan, O., Ohta, Y., Genis, M., Tokashiki, N. and Ohkubo, K. (2010), "Response and stability of underground structures in rock mass during earthquakes", Rock Mech. Rock Eng., 43(6), 857-875. https://doi.org/10.1007/s00603-010-0105-6.
  6. Azadi, M., Ghasemi, S.H. and Mohammadi, M. (2020), "Reliability analysis of tunnels with consideration of the earthquakes extreme events", Geomech. Eng., 22(5), 433-439. https://doi.org/10.12989/gae.2020.22.5.433.
  7. Benioff, H. (1951), "Global strain accumulation and release as revealed by great earthquakes", Geol. Soc. Am. Bull., 62(4), 331-338. https://doi.org/10.1130/0016-7606(1951)62[331:GSAARA]2.0.CO;2.
  8. Bentz, E. (2000), "RESPONSE-2000: load-deformation response of reinforced concrete sections", PhD Dissertation, Department of Civil Engineering, University of Toronto.
  9. Byun, J.E. and D'Ayala, D. (2022), "Urban seismic resilience mapping: a transportation network in Istanbul, Turkey", Sci. Rep., 12(1), 8188. https://doi.org/10.1038/s41598-022-11991-2.
  10. Darendeli, M.B. (2021), "Development of a new family of normalized modulus reduction and material damping curves", The University of Texas, Austin, Texas, U.S America.
  11. Hickey, J. and Broderick, B. (2019), "Loss impact factors for lifetime seismic loss assessment of steel concentrically braced frames designed to EC8", J. Struct. Integr. Maint., 4(3), 110-122. https://doi.org/10.1080/24705314.2019.1622186.
  12. Salawdeh, S. (2021), "Applicability of the direct displacement-based design procedure to concentrically braced frames with setbacks", J. Struct. Integr. Maint., 6(3), 167-176.
  13. SeismoMatch (2020), "A computer program for adjusting earthquake records to match a specific target response spectrum", Available: http://www.seismosoft.com/seismomatch
  14. Sheen, D.H., Seo, K.J., Kim, S., Kim, B.K., Hong, Y. and Byun, A.H. (2023), "A rapid and automatic procedure for seismic analysis based on deep learning and template matching: A case study on the M 4.1 Goesan earthquake on October 29, 2022", J. Geol. Soc. Korea., 59(2), 345-354.
  15. Shibutani, T., Iio, Y., Matsumoto, S., Katao, H., Matsushima, T., Ohmi, S., Takeuchi, F., Uehira, K., Nishigami, K., Enescu, B., Hirose, I., Kano, Y., Kohno, Y., Korenaga, M., Mamada, Y., Miyazawa, M., Tatsumi, K., Ueno, T., Wada, H. and Yukutake, Y. (2005), "Aftershock distribution of the 2004 Mid Niigata Prefecture Earthquake derived from a combined analysis of temporary online observations and permanent observations", Earth Planets Space., 57, 545-549. https://doi.org/10.1186/BF03352590.
  16. Electric Power Research Inst. (1993), Guidelines for determining design basis ground motions. EPRI Research, TR-102293-V5., U.S. America
  17. Hashash, Y.M.A., Hook, J.J., Schmidt, B., John, I. and Yao, C. (2001), "Seismic design and analysis of underground structures", Tunn. Undergr. Sp. Tech., 16(4), 247-293. https://doi.org/10.1016/S0886-7798(01)00051-7.
  18. Hashash, Y.M.A., Park, D. and Yao, J.I.C. (2005), "Ovaling deformations of circular tunnels under seismic loading, an update on seismic design and analysis of underground structures", Tunn. Undergr. Sp. Tech., 20(5), 435-441. https://doi.org/10.1016/j.tust.2005.02.004.
  19. Hashash, Y.M.A. and Romero-Arduz, M.I. (2015), Seismic Design of Tunnels, (Eds., M. Beer, et al.), Encyclopedia of Earthquake Engineering, 2796-2823. Berlin, Heidelberg: Springer.
  20. Jiang, Y., Wang, C. and Zhao, X. (2010), "Damage assessment of tunnels caused by the 2004 Mid Niigata Prefecture Earthquake using Hayashi's quantification theory type II", Nat. Hazards, 53(3), 425-441. https://doi.org/10.1007/s11069-009-9441-9.
  21. Kang, S.J., Kim, J.T. and Cho, G.C. (2020), "Preliminary study on the ground behavior at shore connection of submerged floating tunnel using numerical analysis", Geomech. Eng., 21(2), 133-142. https://doi.org/10.12989/gae.2020.21.2.133.
  22. Kilb, D., Gomberg, J. and Bodin, P. (2000), "Triggering of earthquake aftershocks by dynamic stresses", Nature, 408(6812), 570-574. https://doi.org/10.1038/35046046.
  23. Kim, K.H., Seo, W., Han, J., Kwon, J., Kang, S.Y., Ree, J.H., Kim, S. and Liu, K. (2020). "The 2017 ML 5.4 Pohang earthquake sequence, Korea, recorded by a dense seismic network", Tectonophysics, 774, 228306. https://doi.org/10.1016/j.tecto.2019.228306.
  24. Kim, Y., He, X., Ni, S., Lim, H. and Park, S.C. (2017), "Earthquake source mechanism and rupture directivity of the 12 September 2016 Mw 5.5 Gyeongju, South Korea, earthquake", Bull. Seismol. Soc. Am., 107(5), 2525-2531. https://doi.org/10.1785/0120170004.
  25. Kim, W.Y. and Chapman, M. (2005), "The 9 December 2003 central Virginia earthquake sequence: A compound earthquake in the central Virginia seismic zone", Bull. Seismol. Soc. Am., 95(6), 2428-2445. https://doi.org/10.1785/0120040207.
  26. Kitagawa, Y. and Hiraishi, H. (2004), "Overview of the 1995 Hyogo-Ken Nanbu earthquake and proposals for earthquake mitigation measures", J. Japan Assoc. Earthq. Eng., 4(3), 1-29. https://doi.org/10.5610/jaee.4.3_1.
  27. Kurth, M., Kozlowski, W., Ganin, A., Mersky, A., Leung, B., Dykes, J., Kitsak, M. and Kinkov, I. (2020), "Lack of resilience in transportation networks: Economic implications", Transp. Res. D: Transp. Environ., 86, 102419. https://doi.org/10.1016/j.trd.2020.102419.
  28. Kwak, D., Ahn, J.K., Seo, H., Kang, S. and Kim, B. (2022), "Single-path ground motion amplifications during the 2020 Haenam, South Korea, swarm", Bull. Earthq. Eng., 20(10), 4937-4959. https://doi.org/10.1007/s10518-022-01386-z.
  29. Lei, X. (2011), "Possible roles of the Zipingpu Reservoir in triggering the 2008 Wenchuan earthquake", J. Asian Earth Sci., 40(4), 844-854. https://doi.org/10.1016/j.jseaes.2010.05.004.
  30. Luo, G. and Liu, M. (2010), "Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake", Tectonophysics, 491, 127-140. https://doi.org/10.1016/j.tecto.2009.12.019.
  31. Makridakis, S. and Bakas, N. (2016), "Forecasting and uncertainty: A survey", Risk Decis. Anal., 6(1), 37-64.
  32. McAllister, T.P., Wang, N. and Ellingwood, B.R. (2018), "Risk-informed mean recurrence intervals for updated wind maps in ASCE 7-16", J. Struct. Eng., 144(5), 06018001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002011.
  33. McGarry, F.J. (1968). "Underground tunnels for transport systems", Proceedings of the IEEE, 56(4), 535-544.
  34. Melgar, D., Crowell, B.W., Geng, J., Allen, R.M., Bock, Y., Riquelme, S., Protti, M. and Ganas, A. (2015), "Earthquake magnitude calculation without saturation from the scaling of peak ground displacement", Geophys. Res. Lett., 42(13), 5197-5205. https://doi.org/10.1002/2015GL064278.
  35. Min, B., Zhang, C., Zhu, W., Zhang, X. and Li, P. (2021), "Influence of cracks at the invert on the mechanical behavior of the tunnel structures", Thin-Walled Struct., 161, 107405. https://doi.org/10.1016/j.tws.2020.107405.
  36. Patil, M., Choudhury, D., Ranjith, P.G. and Zhao, J. (2018), "Behavior of shallow tunnel in soft soil under seismic conditions", Tunn. Undergr. Sp. Tech., 82, 30-38. https://doi.org/10.1016/j.tust.2018.04.040.
  37. Penzien, J. (2000), "Seismically induced racking of tunnel linings", Earthq. Eng. Struct. D., 29(5), 683-691. https://doi.org/10.1002/(SICI)10969845(200005)29:5<683::AID-EQE932>3.0.CO;2-1.
  38. Pitilakis, K. and Tsinidis, G. (2014), Performance and Seismic Design of Underground Structures, (Eds., M. Maugeri and C. Soccodato), Earthquake Geotechnical Engineering Design, 279-340. Cham: Springer.
  39. Rayleigh, J. and Lindsay, R. (1945), The Theory of Sound. Dover Publications, Inc., Dover.
  40. Riga, G. and Balocchi, P. (2016), "Seismic sequence structure and earthquakes Triggering patterns", Open J. Earthq. Res., 5(1), 20.
  41. Roy, N., and Sarkar, R. (2017), "A review of seismic damage of mountain tunnels and probable failure mechanisms", Geotech. Geol. Eng., 35(1), 1-28. https://doi.org/10.1007/s10706-016-0091-x.
  42. Schwartz, D.P. and Coppersmith, K.J. (1984), "Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones", J. Geophys. Res. Solid Earth, 89, 5681-5698. https://doi.org/10.1029/JB089iB07p05681.
  43. Sedarat, H., Kozak, A., Hashash, Y.M.A., Shamsabadi, A. and Krimotat, A. (2009), "Contact interface in seismic analysis of circular tunnels", Tunn. Undergr. Sp. Tech.., 24(4), 482-490. https://doi.org/10.1016/j.tust.2008.11.002.
  44. Shin, T.C. and Teng, T.l. (2001), "An Overview of the 1999 Chi-Chi, Taiwan, Earthquake", Bull. Seismol. Soc. Am., 91(5), 895-913. https://doi.org/10.1785/0120000738.
  45. Sonmezer, Y.B. and Celiker, M. (2020), "Determination of seismic hazard and soil response of a critical region in Turkey considering far-field and near-field earthquake effect", Geomech. Eng., 20(2), 131-146. https://doi.org/10.12989/gae.2020.20.2.131.
  46. Stein, S., Geller, R.J. and Liu, M. (2012), "Why earthquake hazard maps often fail and what to do about it", Tectonophysics, 562-563, 1-25. https://doi.org/10.1016/j.tecto.2012.06.047.
  47. Sun, Q.Q. and Dias, D. (2019), "Assessment of stress relief during excavation on the seismic tunnel response by the pseudo-static method", Soil Dyn. Earthq. Eng., 117, 384-397. https://doi.org/10.1016/j.soildyn.2018.09.019.
  48. Tajima, R. and Tajima, F. (2007), "Seismic scaling relations and aftershock activity from the sequences of the 2004 mid Niigata and the 2005 west off Fukuoka earthquakes (MW 6.6) in Japan", J. Geophys. Res. Solid Earth, 112(10). https://doi.org/10.1029/2007JB004941.
  49. Tang, C., Ma, T. and Ding, X. (2009), "On stress-forecasting strategy of earthquakes from stress buildup, stress shadow and stress transfer (SSS) based on numerical approach", Earthq. Sci., 22, 53-62. https://doi.org/10.1007/s11589-009-0053-y.
  50. Wang, C., Ding, X., Chen, Z., Feng, L. and Han, L. (2021), "Seismic response of utility tunnels subjected to different earthquake excitations", Geomech. Eng., 24(1), 67-79. https://doi.org/10.12989/gae.2021.24.1.067.
  51. Wang, J.N. (1993), Seismic design of tunnels: A state of the art approach. (Vol. Monograph 7). Parsons Brinckerhoff Inc., One Penn Plaza, New York., U.S. America.
  52. Wang, T.T., Kwok, O.L.A. and Jeng, F.S. (2021), "Seismic response of tunnels revealed in two decades following the 1999 Chi-Chi earthquake (Mw 7.6) in Taiwan: A review", Eng. Geol., 287, 106090.
  53. Wang, W.L., Wang, T.T., Su, J.J., Lin, C.H., Seng, C.R. and Huang, T.H. (2001), "Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake", Tunn. Undergr. Sp. Technol., 16(3), 133-150. https://doi.org/10.1016/S0886-7798(01)00047-5.
  54. Wang, Z., Gao, B., Jiang, Y. and Yuan, S. (2009), "Investigation and assessment on mountain tunnels and geotechnical damage after the Wenchuan earthquake", Sci. China Technol. Sci., 52(2), 546-558. https://doi.org/10.1007/s11431-009-0054-z.
  55. Wang, Z.Z. and Zhang, Z. (2013), "Seismic damage classification and risk assessment of mountain tunnels with a validation for the 2008 Wenchuan earthquake", Soil Dyn. Earthq. Eng., 45, 45-55. https://doi.org/10.1016/j.soildyn.2012.11.002.
  56. Xia, Y., Xiong, Z., Dong, X. and Lu, H. (2017), "Risk assessment and decision-making under uncertainty in tunnel and underground engineering", Entropy, 19(10), 549. https://doi.org/10.3390/e19100549.
  57. Yun, J.W., Han, J.T. and Ahn, J.K. (2024), "Acceleration amplification characteristics of embankment reinforced with rubble mound", Geomech. Eng., 36(2), 157-166. https://doi.org/10.12989/gae.2024.36.2.157.
  58. Zhao, D., Tu, H., He, Q. and Li, H. (2023), "Research on the design and construction of inclined shafts for long mountain tunnels: A review", Sustainability, 15(13). 9963. https://doi.org/10.3390/su15139963.