DOI QR코드

DOI QR Code

Dentoalveolar effects of open-bite correction with the dual action vertical intra-arch technique: A finite element analysis

  • Sergio Estelita Barros (Division of Orthodontics, Federal University of Rio Grande do Sul) ;
  • Kelly Chiqueto (Division of Orthodontics, Federal University of Rio Grande do Sul) ;
  • Franciele Alberton (Division of Orthodontics, Federal University of Rio Grande do Sul) ;
  • Katherine Jaramillo Cevallos (Division of Orthodontics, Federal University of Rio Grande do Sul) ;
  • Juliana Faria (Division of Orthodontics, Federal University of Rio Grande do Sul) ;
  • Bianca Heck (Division of Orthodontics, Federal University of Rio Grande do Sul) ;
  • Leonardo Machado (Division of Technologies for Production and Health, Renato Archer Information Technology Center) ;
  • Pedro Noritomi (Division of Technologies for Production and Health, Renato Archer Information Technology Center)
  • Received : 2023.12.04
  • Accepted : 2024.07.02
  • Published : 2024.09.25

Abstract

Objective: To evaluate tooth displacement and periodontal stress generated by the dual action vertical intra-arch technique (DAVIT) for open-bite correction using three-dimensional finite element analysis. Methods: A three-dimensional model of the maxilla was created by modeling the cortical bone, cancellous bone, periodontal ligament, and teeth from the second molar to the central incisor of a hemiarch. All orthodontic devices were designed using specific software to reproduce their morpho-dimensional characteristics, and their physical properties were determined using Young's modulus and Poisson's coefficient of each material. A linear static simulation was performed to analyze the tooth displacements (mm) and maximum stresses (Mpa) induced in the periodontal ligament by the posterior intrusion and anterior extrusion forces generated by the DAVIT. Results: The first and second molars showed the greatest intrusion, whereas the canines and lateral incisors showed the greatest extrusion displacement. A neutral zone of displacement corresponding to the fulcrum of occlusal plane rotation was observed in the premolar region. Buccal tipping of the molars and lingual tipping of the anterior teeth occurred with intrusion and extrusion, respectively. Posterior intrusion generated compressive stress at the apex of the buccal roots and furcation of the molars, while anterior extrusion generated tensile stress at the apex and apical third of the palatal root surface of the incisors and canines. Conclusions: DAVIT mechanics produced a set of beneficial effects for open-bite correction, including molar intrusion, extrusion and palatal tipping of the anterior teeth, and occlusal plane rotation with posterior teeth uprighting.

Keywords

References

  1. Alsafadi AS, Alabdullah MM, Saltaji H, Abdo A, Youssef M. Effect of molar intrusion with temporary anchorage devices in patients with anterior open bite: a systematic review. Prog Orthod 2016;17:9. https://doi.org/10.1186/s40510-016-0122-4 
  2. Beane RA Jr. Nonsurgical management of the anterior open bite: a review of the options. Semin Orthod 1999;5:275-83. https://doi.org/10.1016/s1073-8746(99)80021-8 
  3. Hart TR, Cousley RR, Fishman LS, Tallents RH. Dentoskeletal changes following mini-implant molar intrusion in anterior open bite patients. Angle Orthod 2015;85:941-8. https://doi.org/10.2319/090514-625.1 
  4. Marzouk ES, Kassem HE. Evaluation of long-term stability of skeletal anterior open bite correction in adults treated with maxillary posterior segment intrusion using zygomatic miniplates. Am J Orthod Dentofacial Orthop 2016;150:78-88. https://doi.org/10.1016/j.ajodo.2015.12.014 
  5. Park YC, Lee HA, Choi NC, Kim DH. Open bite correction by intrusion of posterior teeth with miniscrews. Angle Orthod 2008;78:699-710. https://doi.org/10.2319/0003-3219(2008)078[0699:OBCBIO]2.0.CO;2 
  6. Scheffler NR, Proffit WR, Phillips C. Outcomes and stability in patients with anterior open bite and long anterior face height treated with temporary anchorage devices and a maxillary intrusion splint. Am J Orthod Dentofacial Orthop 2014;146:594-602. https://doi.org/10.1016/j.ajodo.2014.07.020 
  7. Atsawasuwan P, Hohlt W, Evans CA. Nonsurgical approach to class I open-bite malocclusion with extrusion mechanics: a 3-year retention case report. Am J Orthod Dentofacial Orthop 2015;147:499-508. https://doi.org/10.1016/j.ajodo.2014.04.024 
  8. Isaacson RJ, Lindauer SJ. Closing anterior open bites: the extrusion arch. Semin Orthod 2001;7:34-41. https://doi.org/10.1053/sodo.2001.21064 
  9. Janson G, Valarelli FP, Henriques JF, de Freitas MR, Cancado RH. Stability of anterior open bite nonextraction treatment in the permanent dentition. Am J Orthod Dentofacial Orthop 2003;124:265-76; quiz 340. https://doi.org/10.1016/s0889-5406(03)00449-9 
  10. Lindauer SJ, Isaacson RJ. One-couple orthodontic appliance systems. Semin Orthod 1995;1:12-24. https://doi.org/10.1016/s1073-8746(95)80084-0 
  11. Cruz-Escalante MA, Aliaga-Del Castillo A, Soldevilla L, Janson G, Yatabe M, Zuazola RV. Extreme skeletal open bite correction with vertical elastics. Angle Orthod 2017;87:911-23. https://doi.org/0.2319/042817-287.1 
  12. Gudhimella S, Gandhi V, Schiro NL, Janakiraman N. Management of anterior open bite and skeletal class II hyperdivergent patient with clear aligner therapy. Turk J Orthod 2022;35:139-49. https://doi.org/10.5152/TurkJOrthod.2022.21053 
  13. Kaku M, Kawai A, Koseki H, Abedini S, Kawazoe A, Sasamoto T, et al. Correction of severe open bite using miniscrew anchorage. Aust Dent J 2009;54:374-80. https://doi.org/10.1111/j.1834-7819.2009.01166.x 
  14. Kim YH. Anterior openbite and its treatment with multiloop edgewise archwire. Angle Orthod 1987;57:290-321. https://doi.org/10.1043/0003-3219(1987)057<0290:AOAITW>2.0.CO;2 
  15. Kim YH, Han UK, Lim DD, Serraon ML. Stability of anterior openbite correction with multiloop edgewise archwire therapy: a cephalometric follow-up study. Am J Orthod Dentofacial Orthop 2000;118:43-54. https://doi.org/10.1067/mod.2000.104830 
  16. Barros SE, Chiqueto K, Janson G, Janson M. Dual action vertical intra-arch technique. J Clin Orthod 2022;56:666-76. https://pubmed.ncbi.nlm.nih.gov/37158769/ 
  17. Barros SE, Chiqueto K, Heck B, Faria J, Ferreira E, Janson M. Dual-action vertical intraarch technique: a multifocal technique for open bite correction. AJO-DO Clin Companion 2023;3:286-95. https://doi.org/10.1016/j.xaor.2023.06.001 
  18. Barros SE, Faria J, Jaramillo Cevallos K, Chiqueto K, Machado L, Noritomi P. Torqued and conventional cantilever for uprighting mesially impacted molars: a 3-dimensional finite element analysis. Am J Orthod Dentofacial Orthop 2022;162:e203-15. https://doi.org/10.1016/j.ajodo.2022.07.014 
  19. Heboyan A, Lo Giudice R, Kalman L, Zafar MS, Tribst JPM. Stress distribution pattern in zygomatic implants supporting different superstructure materials. Materials (Basel) 2022;15:4953. https://doi.org/10.3390/ma15144953 
  20. Maximiano GS, de Carvalho GM, Felipe Ferreira FFDC, de Almeida Pinheiro F, Noritomi PY, Campos MJDS, et al. Comparative analysis of the biomechanical behavior of the maxillary central incisors restored with glass fiber post and cast metal post and core submitted to orthodontic forces: a study with finite elements. Am J Orthod Dentofacial Orthop 2024;165:46-53. https://doi.org/10.1016/j.ajodo.2023.06.025 
  21. Cifter M, Sarac M. Maxillary posterior intrusion mechanics with mini-implant anchorage evaluated with the finite element method. Am J Orthod Dentofacial Orthop 2011;140:e233-41. https://doi.org/10.1016/j.ajodo.2011.06.019 
  22. Ammar HH, Ngan P, Crout RJ, Mucino VH, Mukdadi OM. Three-dimensional modeling and finite element analysis in treatment planning for orthodontic tooth movement. Am J Orthod Dentofacial Orthop 2011;139:e59-71. https://doi.org/10.1016/j.ajodo.2010.09.020 
  23. Caballero GM, Carvalho Filho OA, Hargreaves BO, Brito HH, Magalhaes Junior PA, Oliveira DD. Mandibular canine intrusion with the segmented arch technique: a finite element method study. Am J Orthod Dentofacial Orthop 2015;147:691-7. https://doi.org/10.1016/j.ajodo.2015.01.022 
  24. Xia Z, Jiang F, Chen J. Estimation of periodontal ligament's equivalent mechanical parameters for finite element modeling. Am J Orthod Dentofacial Orthop 2013;143:486-91. https://doi.org/10.1016/j.ajodo.2012.10.025 
  25. Jain A, Prasantha GS, Mathew S, Sabrish S. Analysis of stress in periodontium associated with orthodontic tooth movement: a three dimensional finite element analysis. Comput Methods Biomech Biomed Engin 2021;24:1841-53. https://doi.org/10.1080/10255842.2021.1925255 
  26. Kawamura J, Park JH, Tamaya N, Oh JH, Chae JM. Biomechanical analysis of the maxillary molar intrusion: a finite element study. Am J Orthod Dentofacial Orthop 2022;161:775-82. https://doi.org/10.1016/j.ajodo.2020.12.028 
  27. Mazhari M, Khanehmasjedi M, Mazhary M, Atashkar N, Rakhshan V. Dynamics, efficacies, and adverse effects of maxillary full-arch intrusion using temporary anchorage devices (miniscrews): a finite element analysis. Biomed Res Int 2022;2022:6706392. https://doi.org/10.1155/2022/6706392 
  28. Janson G, Laranjeira V, Rizzo M, Garib D. Posterior tooth angulations in patients with anterior open bite and normal occlusion. Am J Orthod Dentofacial Orthop 2016;150:71-7. https://doi.org/10.1016/j.ajodo.2015.12.016 
  29. Han G, Huang S, Von den Hoff JW, Zeng X, Kuijpers-Jagtman AM. Root resorption after orthodontic intrusion and extrusion: an intraindividual study. Angle Orthod 2005;75:912-8. https://doi.org/10.1043/0003-3219(2005)75[912:RRAOIA]2.0.CO;2 
  30. Ari-Demirkaya A, Masry MA, Erverdi N. Apical root resorption of maxillary first molars after intrusion with zygomatic skeletal anchorage. Angle Orthod 2005;75:761-7. https://doi.org/10.1043/0003-3219(2005)75[761:ARROMF]2.0.CO;2