DOI QR코드

DOI QR Code

A study on the improvement of rain detectors error status analysis and observation algorithm

강우감지기 오류현황 분석 및 관측 알고리즘 개선 연구

  • Hwang, SungEun (Observation Research Department, National Institute of Meteorological sciences) ;
  • Kim, ByeongTaek (Observation Research Department, National Institute of Meteorological sciences) ;
  • Lee, YoungTae (Observation Research Department, National Institute of Meteorological sciences) ;
  • In, SoRa (Observation Research Department, National Institute of Meteorological sciences)
  • 황성은 (국립기상과학원 관측연구부) ;
  • 김병택 (국립기상과학원 관측연구부) ;
  • 이영태 (국립기상과학원 관측연구부) ;
  • 인소라 (국립기상과학원 관측연구부)
  • Received : 2024.07.03
  • Accepted : 2024.08.06
  • Published : 2024.09.30

Abstract

We attempted to check the observation failure and error status of rain detectors for weather observation introduced and used in the 1980s and improve the collection and calculation algorithm of 1-minute rain detector data to enhance observation efficiency. Error status analysis revealed that among weather observation devices, rain detectors undergo manual quality control (MQC) the most frequently. It was determined that the precipitation recognition rate could be improved by refining the precipitation calculation algorithm. We examined and selected domestic and international rainfall detection algorithms and compared their precipitation recognition rates using random data. The algorithm that determined 'rainfall' when precipitation was measured at least once every 10 seconds showed the highest precipitation recognition rate. Although the algorithm tends to oversimulate precipitation, this can be improved through quality control of raw data. Based on the results of this study, it is believed that it can contribute to reducing the error rate and improving the accuracy of rain detectors.

본 연구에서는 1980년대 도입되어 활용되고 있는 기상관측용 강우감지기의 관측 장애 및 오류 현황을 확인하고, 관측 효율 개선을 위해 강우감지기 1분 자료 수집, 산출 알고리즘 개선하고자 하였다. 오류 현황 분석 결과 강우감지기는 기상관측기 중 수동 품질관리를 가장 많이 시행되는 관측 장비로 이는 강수 산출 알고리즘 개선을 통해 강수 인식율 향상이 가능한 것으로 판단되었다. 국내외 강우감지기 알고리즘을 확인,선별하여 임의의 자료로 강수 인식율을 비교한 결과 10초 간격으로 강수를 측정 1회 이상 강수 측정 시 '강수'로 판별하는 알고리즘이 가장 높은 강수 인식율을 보였다. 해당 알고리즘이 강수를 과대모의하는 경향이 있으나 이는 원시자료 품질관리를 통해 개선 가능할 것으로 판단된다. 본 연구 결과를 토대로 강우감지기 오류율 감소와 정확도 향상에 기여할 수 있을 것으로 사료된다.

Keywords

Acknowledgement

본 연구는 기상청 국립기상과학원 「국가 기상관측장비 및 관측자료 표준화(KMA2018-00221)」 사업의 지원으로 수행되었습니다.

References

  1. Antonini, A., Melani, S., Mazza, A., Baldini, L., Adirosi, E., and Ortolani, A. (2022). "Development and calibration of a lowcost, piezoelectric rainfall sensor through machine learning." Sensors, Vol. 22 No. 17, 6638.
  2. Chen, P., and Yu, Q. (2018). "Proximity capacitance array sensor based on data aggregation strategy for rainfall detection." Sensors & Materials, MYU Tokyo, Vol. 30, No. 5. pp. 957-977.
  3. Claassen, H.C., and Halm, D.R. (1995). "Performance characteristics of an automated wet deposition collector and possible effect on computed annual deposition." Atmospheric Environment, Great Britain ,Vol. 29, No. 9, pp. 1021-1026.
  4. FIEDLER (2017). RG-11, accessed 29 May 2024, .
  5. Korea Meteorological Administration (KMA) (2019). Standard specification of automatic weather observation equipment. Meteorological Blueprint, No. 2019-9, p. 24.
  6. Lee, J.W., and Lee, E.H. (2018). "Evaluation of daily precipitation estimate from integrated multisatellite retrievals for GPM (IMERG) data over South Korea and East Asia." Atmosphere, Vol. 28, No. 3, pp. 273-289. https://doi.org/10.14191/ATMOS.2018.28.3.273
  7. Lee, Y.M. (2016). "The design of the rain sensor using a coaxial cavity resonator." Microwave and Optical Technology Letters, Vol. 58, No. 1, pp. 128-133.
  8. LUFFT (2015). WS100, accessed 29 May 2024, .
  9. Marendic-Miljkovic, J., Tasic, M., Rajsic, S., and Vukmirovic, Z. (2000). "Precipitation onset detection with a rain sensor of improved sensitivity." Atmospheric Environment, Vol. 34, No. 29-30, pp. 5175-5181.
  10. Paranjape, B.V., and Paranjape, M.B. (1996). "The deformation of bubbles and drops in immiscible fluids." Physics and Chemistry of Liquids, Vol. 31, No. 2, pp. 83-88.
  11. SEATECH (2012). PRT0100, accessed 29 May 2024, .
  12. Simone, G., Manfred, T., Karsten, S., and Eckhard, L. (2014). "Field intercomparison and laboratory tests of precipitation detectors." WMO TECO-2014(Technical Conference on Meteorological and Environmental Instruments and Methods of Observation), Saint Petersburg, Russian, p. 13.
  13. THIES-CLIMA (2014). 5.4103.20, accessed 29 May 2024, .
  14. VAISALA (2020). WXT530, accessed 29 May 2024, .
  15. VAISALA (2021). DRD11a, accessed 29 May 2024, .
  16. World Meteorological Organization (WMO) (2018). No.8-CIMO guide. Gneva, Swiss, Vol. 1. pp. 214-245.