DOI QR코드

DOI QR Code

Risk assessment of water scarcity considering socio-economic characteristics in Gwangju and Jeonnam

광주·전남지역의 사회경제적 특성을 고려한 물부족 위험도 평가

  • Hwang, Se Won (Division for Integrated Water Management, Korea Environment Institute) ;
  • Park, Ju Young (Division for Green Transition, Korea Environment Institute) ;
  • Lee, Moon Hwan (Division for Integrated Water Management, Korea Environment Institute)
  • 황세원 (한국환경연구원 통합물관리연구실) ;
  • 박주영 (한국환경연구원 녹색전환연구실) ;
  • 이문환 (한국환경연구원 통합물관리연구실)
  • Received : 2024.06.17
  • Accepted : 2024.09.09
  • Published : 2024.09.30

Abstract

Unlike other disasters, the water shortage problem caused by drought is characterized by the long-lasting ripple effect of the social and economic sectors in all regions of Korea, and the types and purposes of water mainly used are different depending on the type of region, so the factors and scale of water shortage damage are different. In this study, a methodology to evaluate the risk of water shortage based on socioeconomic characteristics was developed and applied to Gwangju and Jeollanam-do to analyze the results. To this end, 20 impact indicators for risk, exposure, and vulnerability items were selected according to the climate risk concept of IPCC AR6. The results of the water shortage risk evaluation reflecting socioeconomic characteristics were different from the risk results considering only the existing meteorological and hydrological factors. The areas with the greatest risk of water shortage were calculated as Yeonggwang-eup in Yeonggwang-gun, Yeonsan-dong and Haean-dong 4-ga in Mokpo-si, Jeokryang-dong in Yeosu-si and Geumsan-myeon in Goheung-si. Through the evaluation results, risk factors and countermeasures for water shortage were derived in consideration of detailed characteristics of the region, which can be used as data contributing to the establishment of measures to reduce drought damage tailored to the region in the future.

가뭄으로 인한 물부족 문제는 다른 재해와는 다르게 우리나라 전 지역의 사회·경제 부문의 파급효과가 오랫동안 지속된다는 특징을 지니고 있으며, 지역의 유형에 따라 주로 활용되는 용수의 종류와 목적이 달라 물부족 피해 요인과 규모가 상이하다. 본 연구에서는 사회경제적 특성을 기반으로 물부족 위험도를 평가하는 방법론을 개발하고, 광주와 전남지역에 적용하여 결과를 분석하였다. 이를 위해, IPCC AR6의 기후위험 개념에 따라 위해성(hazard), 노출성(exposure), 취약성(vulnerability) 항목에 대한 20개의 영향 지표를 선정하였다. 사회경제적 특성을 반영한 물부족 위험도 평가 결과는 기존의 기상학적, 수문학적 요인만을 고려한 위험 결과와 다르게 나타났다. 종합적인 위험도 분석 결과, 영광군, 목포시, 여수시, 고흥군의 일부 읍면동에서 높은 위험도를 보였다. 평가결과를 통해 지역의 세부적인 특성을 고려하여 물부족의 위험성 요인과 대응 방안을 도출하였으며, 이는 향후 지역 맞춤형 가뭄 피해 저감 대책 수립에 기여하는 자료로 활용될 수 있을 것이다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 가뭄대응 물관리 혁신기술 개발사업의 지원을 받아 한국환경연구원에서 연구되었습니다(RS-2023-00230286).

References

  1. Chen, J., Yang, S., Li, H., Zhang, B., and Lv, J. (2013). "Research on geographical environment unit division based on the method of natural breaks (jenks)." The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XL-4/W3, pp. 47-50.
  2. Choi, S.H. (2018). Drought risk index development for drought risk assessment. Master's Thesis, Seoul National University.
  3. Deutsche Gesellschaft fur Internationale Zusammenarbeit (GIZ) and EURAC Research (EURAC) (2017). Risk supplement to the vulnerability sourcebook: Guidance on how to apply the vulnerability Sourcebook's approach with the new IPCC AR5 concept of climate risk. Deutsche Gesellschaft fur Internationale Zusammenarbeit, Bonn, Germany.
  4. Hagenlocher, M., Meza, I., Anderson, C., Min, A., Renaud, F., Walz, Y., Siebert, S., and Sebesvari, Z. (2019) "Drought vulnerability and risk assessments: State of the art, persistent gaps, and research agenda." Environmental Research Letters, Vol. 14, 083002.
  5. Intergovernmental Panel on Climate Change (IPCC) (2014). Climate change 2014: Synthesis report. contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Report, Geneva, Switzerland.
  6. Intergovernmental Panel on Climate Change (IPCC) (2022). Climate change 2022: Impacts, adaptation, and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Full Report 3056, Cambridge University Press, Cambridge, UK and New York, NY, U.S.
  7. Jang, M.W. (2006). "County-based vulnerability evaluation to agricultural drought using principal component analysis - The case of Gyeonggi-do -." Korean Society of Rural Planning, Vol. 12, pp. 37-48. (in Korean)
  8. Jung, H.C., Shin, J.Y., Park, J.H., Yu, I.S., and Shin, Y.H. (2022). A study on climate risk and adaptation assessment system to prepare mid- to long-term adaptation strategies, Report, Korea Environment Institute.
  9. Kim, B.S., Sung, J.H., Lee, B.H., and Kim, D.J. (2013). "Evaluation on the impact of extreme droughts in South Korea using the SPEI and RCP8.5 climate change scenario." Journal of the Korean Society of Hazard Mitigation, Vol. 13, pp. 97-109. (in Korean)
  10. Kim, J.E., Kim, M.J., Choi, S,J., Lee, J,H., and Kim, T.W. (2022). "Drought risk assessment considering regional socio-economic factors and water supply system." Journal of Korea Water Resources Association, Vol. 55, pp. 589-601. (in Korean) https://doi.org/10.3741/JKWRA.2022.55.8.589
  11. Korea Meteorological Administration (KMA) Press (2024). "Characteristics of annual meteorological drought in 2023." January, 26.
  12. Lee, B.R., Sung, J.H., and Chung, E.S. (2015). "Comparison of meteorological drought and hydrological drought index." Journal of Korea Water Resources Association, Vol. 48, pp. 69-78. (in Korean) https://doi.org/10.3741/JKWRA.2015.48.1.69
  13. Lee, M.H., Im, E.S., and Bae, D.H. (2019). "A comparative assessment of climate change impacts on drought over Korea based on multiple climate projections and multiple drought indices." Climate Dynamics, Vol. 53, pp. 389-404.
  14. Lee, S.E., and Yoon, S.K. (2015). "The development of socioeconomic drought risk assessment methodology with a focus of residential water scarcity." Journal of Korean Society of Water and Wastewater, Vol. 29, pp. 381-393. (in Korean)
  15. Lee, S.M., Choi, Y.J., and Yi, J.E. (2020). "Urban flood vulnerability assessment using the entropy weight method." Journal of the Korean Society of Hazard Mitigation, Vol. 20, pp. 389-397. (in Korean)
  16. Liu, Y., and Chen, J. (2021). "Future global socioeconomic risk to droughts based on estimates of hazard, exposure, and vulnerability in a changing climate." The Science of The Total Environment, Vol. 751, 142159.
  17. Meza, I., Hagenlocher, M., Naumann, G., Vogt, J. and Frischen, J. (2019). Drought vulnerability indicators for global-scale drought risk assessments, EUR 29824 EN, Publications Office of the European Union, Luxembourg.
  18. Ministry of Environment (ME) (2023). Production of national drought vulnerability map. REPORT 11-1480964-000046-01, Han River Flood Control Center.
  19. Ministry of Environment (ME) Press (2022). "Intergovernmental Panel on Climate Change (IPCC) approves the 6th Assessment Report on Climate Change Impacts and Adaptation (AR6, WG2)." February 28.
  20. Ministry of Environment (ME) Press (2023). "Continuing all-out response to drought in Gwangju and Jeonnam regions." March 31.
  21. Mun, Y.S., Nam, W.H., Yang, M.H., Shin, J.H., Jeon, M.G., Kim, T., Lee, S.Y., and Lee, K.Y. (2021). "Evaluation of agricultural drought disaster vulnerability using Analytic Hierarchy Process (AHP) and entropy weighting method." Journal of the Korean Society of Agricultural Engineers, Vol. 63, pp. 13-26. (in Korean) https://doi.org/10.5389/KSAE.2021.63.3.013
  22. Ortega-Gaucin, D., Ceballos-Tavares, J.A., Ordonez Sanchez, A., Castellano-Bahena, H.V. (2021). "Agricultural drought risk assessment: A spatial analysis of hazard, exposure, and vulnerability in Zacatecas, Mexico." Water, Vol. 13, 1431.
  23. Park, J.Y., Yoo, J.Y., Lee, M.W., and Kim, T.W. (2012). "Assessment of drought risk in Korea: Focused on data-based drought risk map." Journal of the Korean Society of Civil Engineers, Vol. 32, pp. 203-211. (in Korean) https://doi.org/10.12652/KSCE.2012.32.4B.203
  24. Rajsekhar, D., Singh, V., and Mishra, A. (2015). "Integrated drought causality, hazard, and vulnerability assessment for future socioeconomic scenarios: An information theory perspective." Journal of Geophysical Research: Atmospheres, Vol. 120, pp. 6346-6378.
  25. Sahana, V., and Mondal, A. (2023). "Evolution of multivariate drought hazard, vulnerability and risk in India under climate change." Natural Hazards and Earth System Sciences, Vol. 23, pp. 623-641.
  26. Seo, J.H., Chi, H.W., Kim, H.J., and Kim, Y.J., (2022). "Hydrological drought risk assessment for climate change adaptation in South Korea." Journal of Korea Water Resources Association, Vol. 55, pp. 421-435. (in Korean) https://doi.org/10.3741/JKWRA.2022.55.6.421
  27. Seo, S.S., Kim, D.G., Lee, K.H., Kim, H.S., Kim, T.W. (2009). "Estimation of drought damage based on agricultural and domestic water use." Korean Wetlands Society, Vol. 11, pp. 77-87. (in Korean)
  28. Shannon, C.E. (1948). "A mathematical theory of communication." The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656.
  29. Sung, J.H., and Chae, G.S. (2018). "The economic effects of droughts: Focused on rice production." Korea Rural Economic Institute, Vol. 41, pp. 1-23. (in Korean)
  30. United Nations (UN) (2021). The United Nations world water development report 2021: Valuing water. UNESCO, Paris, France.
  31. United Nations (UN) (2023). The United Nations World water development report 2023: Vpartnerships and cooperation for water. UNESCO, Paris, France.
  32. World Bank (2019). Assessing drought hazard and risk: Principles and implementation guidance. Washington, DC, U.S.
  33. Yang, W., and Zhang, L., (2023). "Agricultural drought disaster risk assessment in Shandong Province, China." Natural Hazards, Vol. 118, pp. 1515-1534.
  34. Yu, I.S. (2020). "Methodology of an analysis of snow disaster risk for establishing climate change adaptation measures." Journal of the Korean Society of Hazard Mitigation, Vol. 20, pp. 351-364. (in Korean)
  35. Yun, Y.B. (2021). A study on the reduction of climate disasters through risk evaluation. Report, Ulsan Research Institute.
  36. Zuzak, C., Goodenough, E., Stanton, C., Mowrer, M., Sheehan, A., Roberts, B., McGuire, P., and Rozelle, J. (2023) National risk index technical documentation. Federal Emergency Management Agency, Washington, DC, U.S.