DOI QR코드

DOI QR Code

Opportunistic investigation of vascular calcification using 3-dimensional dental imaging

  • Received : 2024.03.02
  • Accepted : 2024.06.19
  • Published : 2024.09.30

Abstract

Purpose: Given the growing use of cone-beam computed tomography (CBCT) scans, this study assessed radiation exposure from these scans in the context of national guidelines and recommended dose limits. Materials and Methods: The current literature was reviewed to quantify the benefit of opportunistic diagnosis of carotid artery calcification relative to the potential risk of radiation-induced cancer. Results: The average radiation from CBCT at its largest field of view and highest resolution possible amounts to a reasonable but still low ionizing radiation exposure. This exposure is comparable to 22 days of background radiation and is notably lower than the radiation exposure from medical CT scans. According to the risk assessment analysis, the risk of stroke events involving internal and external carotid artery calcification (CAC) was 202 and 67 per 100,000 individuals, respectively. In contrast, the estimated risk of radiation-induced cancer associated with CBCT was notably lower, at 0.6 per 100,000. Conclusion: The present study advocates for a comprehensive assessment of CBCT scans encompassing the areas of the internal and external carotid arteries by a knowledgeable professional, given the potential advantages of early detection of vascular abnormalities. Dental professionals who take scans involving these areas need to be mindful of reporting these findings and refer patients to their primary care physician for further investigation.

Keywords

References

  1. Jadhav A, Desai NG, Tadinada A. Accuracy of anatomical depictions in cone beam computed tomography (CBCT)-reconstructed panoramic projections compared to conventional panoramic radiographs: a clinical risk-benefit analysis. Cureus 2023; 15: e44723.
  2. Jain S, Choudhary K, Nagi R, Shukla S, Kaur N, Grover D. New evolution of cone-beam computed tomography in dentistry: combining digital technologies. Imaging Sci Dent 2019; 49: 179-90. https://doi.org/10.5624/isd.2019.49.3.179
  3. Lindfors N, Ekestubbe A, Frisk F, Lund H. Is cone-beam computed tomography (CBCT) an alternative to plain radiography in assessments of dental disease? A study of method agreement in a medically compromised patient population. Clin Oral Investig 2024; 28: 127.
  4. Komuro A, Yamada Y, Uesugi S, Terashima H, Kimura M, Kishimoto H, et al. Accuracy and dimensional reproducibility by model scanning, intraoral scanning, and CBCT imaging for digital implant dentistry. Int J Implant Dent 2021; 7: 63.
  5. Khanna AB. Applications of cone beam computed tomography in endodontics. Evid Based Endod 2020; 5: 1.
  6. Jacobs R, Salmon B, Codari M, Hassan B, Bornstein MM. Cone beam computed tomography in implant dentistry: recommendations for clinical use. BMC Oral Health 2018; 18: 88.
  7. Braun MJ, Rauneker T, Dreyhaupt J, Hoffmann TK, Luthardt RG, Schmitz B, et al. Dental and maxillofacial cone beam ct-high number of incidental findings and their impact on follow-up and therapy management. Diagnostics (Basel) 2022; 12: 1036.
  8. Edwards R, Altalibi M, Flores-Mir C. The frequency and nature of incidental findings in cone-beam computed tomographic scans of the head and neck region: a systematic review. J Am Dent Assoc 2013; 144: 161-70. https://doi.org/10.14219/jada.archive.2013.0095
  9. Dief S, Veitz-Keenan A, Amintavakoli N, McGowan R. A systematic review on incidental findings in cone beam computed tomography (CBCT) scans. Dentomaxillofac Radiol 2019; 48: 20180396.
  10. Khalifa HM, Felemban OM. Nature and clinical significance of incidental findings in maxillofacial cone-beam computed tomography: a systematic review. Oral Radiol 2021; 37: 547-59. https://doi.org/10.1007/s11282-020-00499-y
  11. Ahmed M, McPherson R, Abruzzo A, Thomas SE, Gorantla VR. Carotid artery calcification: what we know so far. Cureus 2021; 13: e18938.
  12. Saba L, Nardi V, Cau R, Gupta A, Kamel H, Suri JS, et al. Carotid artery plaque calcifications: lessons from histopathology to diagnostic imaging. Stroke 2022; 53: 290-7. https://doi.org/10.1161/STROKEAHA.121.035692
  13. Song P, Fang Z, Wang H, Cai Y, Rahimi K, Zhu Y, et al. Global and regional prevalence, burden, and risk factors for carotid atherosclerosis: a systematic review, meta-analysis, and modelling study. Lancet Glob Health 2020; 8: e721-9. https://doi.org/10.1016/S2214-109X(20)30117-0
  14. Bos D, Portegies ML, van der Lugt A, Bos MJ, Koudstaal PJ, Hofman A, et al. Intracranial carotid artery atherosclerosis and the risk of stroke in whites: the Rotterdam study. JAMA Neurol 2014; 71: 405-11. https://doi.org/10.1001/jamaneurol.2013.6223
  15. Nandalur KR, Baskurt E, Hagspiel KD, Finch M, Phillips CD, Bollampally SR, et al. Carotid artery calcification on CT may independently predict stroke risk. AJR Am J Roentgenol 2006; 186: 547-52. https://doi.org/10.2214/AJR.04.1216
  16. Friedlander AH. Cone-beam computed tomographic incidental findings-a cause for worry. J Oral Maxillofac Surg 2014; 72: 3.
  17. Schulze R, Friedlander AH. Cone beam CT incidental findings: intracranial carotid artery calcification - a cause for concern. Dentomaxillofac Radiol 2013; 42: 20130347.
  18. Canadian Nuclear Safety Commission [Internet]. Types and sources of radiation [cited 2024 May 11]. Available from: https://www.cnsc-ccsn.gc.ca/eng/resources/radiation/typesand-sources-of-radiation/.
  19. Canadian Nuclear Safety Commission [Internet]. Natural background radiation [cited 2024 May 11]. Available from: https://www.cnsc-ccsn.gc.ca/eng/resources/fact-sheets/natural-background-radiation/.
  20. Canadian Nuclear Safety Commission [Internet]. Radiation doses [cited 2023 Nov 2]. Available from: https://www.cnsc-ccsn.gc.ca/eng/resources/radiation/radiation-doses.
  21. Health Canada [Internet]. Radiation protection in dentistry: safety procedures for the installation, use and control of dental X-ray equipment - Safety Code 30 (2022) [cited 2023 Nov 2]. Available from: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/radiation/radiation-protection-dentistry-recommended-safety-procedures-use-dental-equipment-safety-code-30.html.
  22. American College of Radiology [Internet]. Radiation Dose to Adults from Common Imaging Examinations [cited 2023 Nov 2]. Available from: https://www.acr.org/-/media/ACR/Files/ Radiology-Safety/Radiation-Safety/Dose-Reference-Card.pdf.
  23. Ludlow JB, Timothy R, Walker C, Hunter R, Benavides E, Samuelson DB. Correction to effective dose of dental CBCT - a meta analysis of published data and additional data for nine CBCT units. Dentomaxillofac Radiol 2015; 44: 20159003.
  24. Al-Okshi A, Horner K, Rohlin M. A meta-review of effective doses in dental and maxillofacial cone beam CT using the ROBIS tool. Br J Radiol 2021; 94: 20210042.
  25. United States Nuclear Regulatory Commission [Internet]. Subpart D - radiation dose limits for individual members of the public [cited 2023 Nov 4]. Available from: https://www.nrc.gov/reading-rm/doc-collections/cfr/part020/part020-1301.html.
  26. Wrixon AD. New ICRP recommendations. J Radiol Prot 2008; 28: 161-8. https://doi.org/10.1088/0952-4746/28/2/R02
  27. Oenning AC, Pauwels R, Stratis A, De Faria Vasconcelos K, Tijskens E, De Grauwe A, et al. Halve the dose while maintaining image quality in paediatric cone beam CT. Sci Rep 2019; 9: 5521.
  28. Yeung AW, Jacobs R, Bornstein MM. Novel low-dose protocols using cone beam computed tomography in dental medicine: a review focusing on indications, limitations, and future possibilities. Clin Oral Investig 2019; 23: 2573-81. https://doi.org/10.1007/s00784-019-02907-y
  29. National Research Council. Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2. National Academies Press: Washington, DC; 2005.
  30. Pauwels R, Cockmartin L, Ivanauskaite D, Urboniene A, Gavala S, Donta C, et al. Estimating cancer risk from dental conebeam CT exposures based on skin dosimetry. Phys Med Biol 2014; 59: 3877-91.
  31. Yeh JK, Chen CH. Estimated radiation risk of cancer from dental cone-beam computed tomography imaging in orthodontics patients. BMC Oral Health 2018; 18: 131.
  32. Jha N, Kim YJ, Lee Y, Lee JY, Lee WJ, Sung SJ. Projected lifetime cancer risk from cone-beam computed tomography for orthodontic treatment. Korean J Orthod 2021; 51: 189-98. https://doi.org/10.4041/kjod.2021.51.3.189
  33. Damaskos S, Aartman IH, Tsiklakis K, van der Stelt P, Berkhout WE. Association between extra- and intracranial calcifications of the internal carotid artery: a CBCT imaging study. Dentomaxillofac Radiol 2015; 44: 20140432.
  34. Hashimoto K, Kawashima S, Kameoka S, Akiyama Y, Honjoya T, Ejima K, et al. Comparison of image validity between cone beam computed tomography for dental use and multi-detector row helical computed tomography. Dentomaxillofac Radiol 2007; 36: 465-71.
  35. Heiland M, Pohlenz P, Blessmann M, Habermann CR, Oesterhelweg L, Begemann PC, et al. Cervical soft tissue imaging using a mobile CBCT scanner with a flat panel detector in comparison with corresponding CT and MRI data sets. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007; 104: 814-20. https://doi.org/10.1016/j.tripleo.2007.04.031
  36. Kachlan MO, Yang J, Balshi TJ, Wolfinger GJ, Balshi SF. Incidental findings in cone beam computed tomography for dental implants in 1002 patients. J Prosthodont 2021; 30: 665-75. https://doi.org/10.1111/jopr.13329
  37. de Onofre NM, Vizzotto MB, Wanzeler AM, Tiecher PF, Arus NA, Arriola Guillen LE, et al. Association between internal carotid artery calcifications detected as incidental findings and clinical characteristics associated with atherosclerosis: a dental volumetric tomography study. Eur J Radiol 2021; 145: 110045.
  38. Health Canada [Internet]. Canadian chronic disease surveillance system (CCDSS) [cited 2023 Nov 6]. Available from: https://health-infobase.canada.ca/ccdss/data-tool/.
  39. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, et al. 2021 guideline for the prevention of stroke in patients with stroke and transient ischemic attack: a guideline from the American Heart Association/ American Stroke Association. Stroke 2021; 52: e364-467.
  40. Gattringer T, Posekany A, Niederkorn K, Knoflach M, Poltrum B, Mutzenbach S, et al. Predicting early mortality of acute ischemic stroke. Stroke 2019; 50: 349-56. https://doi.org/10.1161/STROKEAHA.118.022863
  41. Bytyci I, Shenouda R, Wester P, Henein MY. Carotid atherosclerosis in predicting coronary artery disease: a systematic review and meta-analysis. Arterioscler Thromb Vasc Biol 2021; 41: e224-37.
  42. Zanzonico PB. The neglected side of the coin: quantitative benefit-risk analyses in medical imaging. Health Phys 2016; 110: 301-4. https://doi.org/10.1097/HP.0000000000000416
  43. Zanzonico P, Stabin MG. Quantitative benefit-risk analysis of medical radiation exposures. Semin Nucl Med 2014; 44: 210-4. https://doi.org/10.1053/j.semnuclmed.2014.03.010
  44. Spence JD, Song H, Cheng G. Appropriate management of asymptomatic carotid stenosis. Stroke Vasc Neurol 2016; 1: 64-71. https://doi.org/10.1136/svn-2016-000016
  45. Repin LV, Akhmatdinov RR, Biblin AM, Repin VS. On harmonization of health risk indicators caused by ionizing radiation exposure and other harmful factors based on daily estimate. Health Risk Anal 2022; 2022: 162-75.
  46. World Health Organization. WHO Methods and data sources for life tables 1990-2016. [Internet]. Geneva: WHO; 2018 [cited 2024 May 12]. Available from: https://cdn.who.int/media/docs/default-source/gho-documents/global-health-estimates/lt_method_2016.pdf.
  47. Shimada K, Kai M. Calculating disability-adjusted life years (DALY) as a measure of excess cancer risk following radiation exposure. J Radiol Prot 2015; 35: 763-75. https://doi.org/10.1088/0952-4746/35/4/763
  48. Kotre CJ. Comparing benefit and detriment from medical diagnostic radiation exposure using disability-adjusted life years: towards quantitative justification. J Radiol Prot 2023; 43: 041512.
  49. Pette GA, Norkin FJ, Ganeles J, Hardigan P, Lask E, Zfaz S, et al. Incidental findings from a retrospective study of 318 cone beam computed tomography consultation reports. Int J Oral Maxillofac Implants 2012; 27: 595-603.
  50. Kadkhodayan S, Almeida FT, Lai H, Pacheco-Pereira C. Uncovering the hidden: a study on incidental findings on cbct scans leading to external referrals. Int Dent J 2024; 74: 808-15.
  51. Kuhnisch J, Anttonen V, Duggal MS, Spyridonos ML, Rajasekharan S, Sobczak M, et al. Best clinical practice guidance for prescribing dental radiographs in children and adolescents: an EAPD policy document. Eur Arch Paediatr Dent 2020; 21: 375-86. https://doi.org/10.1007/s40368-019-00493-x
  52. White SC, Scarfe WC, Schulze RK, Lurie AG, Douglass JM, Farman AG, et al. The Image Gently in Dentistry campaign: promotion of responsible use of maxillofacial radiology in dentistry for children. Oral Surg Oral Med Oral Pathol Oral Radiol 2014; 118: 257-61. https://doi.org/10.1016/j.oooo.2014.06.001
  53. Hicks D, Melkers M, Barna J, Isett KR, Gilbert GH. Comparison of the accuracy of CBCT effective radiation dose information in peer-reviewed journals and dental media. Gen Dent 2019; 67: 38-46.