DOI QR코드

DOI QR Code

Image quality-based dose optimization in pediatric cone-beam computed tomography: A pilot methodological study

  • Hak-Sun Kim (Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry) ;
  • Yoon Joo Choi (Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry) ;
  • Kug Jin Jeon (Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry) ;
  • Sang-Sun Han (Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry) ;
  • Chena Lee (Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry)
  • Received : 2024.02.19
  • Accepted : 2024.04.26
  • Published : 2024.09.30

Abstract

Purpose: This study aimed to propose a methodological approach for reducing the radiation dose in pediatric cone-beam computed tomography (CBCT), focusing exclusively on balancing image quality with dose optimization. Materials and Methods: The dose-area product (DAP) for exposure was reduced using copper-plate attenuation of an X-ray source. The thickness of copper (Cu) was increased from 0 to 2.2 mm, and 10 different DAP levels were used. The QUART DVT_AP phantom and pediatric radiologic dentiform were scanned under the respective DAP levels. The contrast-to-noise ratio (CNR), image homogeneity, and modulation transfer function (MTF) were analyzed using the QUART DVT_AP phantom. An expert evaluation (overall image grade, appropriateness of field of view, artifacts, noise, and resolution) was conducted using pediatric dentiform images. The critical DAP level was determined based on phantom and dentiform analysis results. Results: CNR and image homogeneity decreased as the DAP was reduced; however, there was an inflection point of image homogeneity at Cu 1.6 mm (DAP=138.00 mGy·cm2), where the value started increasing. The MTF showed constant values as the DAP decreased. The expert evaluation of overall image grades showed "no diagnostic value" for dentiform images with Cu 1.9-2.2 mm (DAP=78.00-103.33 mGy·cm2). The images with Cu 0-1.6 mm (DAP=138.00-1697.67mGy·cm2) had a "good," "moderate," or "poor but interpretable" grade. Conclusion: Reducing DAP beyond a 1.6-mm Cu thickness degraded CBCT image quality. Image homogeneity and clinical image grades indicated crucial decision points for DAP reduction in pediatric CBCT scans.

Keywords

Acknowledgement

The authors would like to thank Hoyoung Seo, Yong Hyun Lee, Jiwoo An, and Youjin Jung for assisting with the experiment as part of a student research grant from the Yonsei University College of Dentistry.

References

  1. Mozzo P, Procacci C, Tacconi A, Martini PT, Andreis IA. A new volumetric CT machine for dental imaging based on the cone-beam technique: preliminary results. Eur Radiol 1998; 8: 1558-64. https://doi.org/10.1007/s003300050586
  2. Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K. Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 1999; 28: 245-8. https://doi.org/10.1038/sj/dmfr/4600448
  3. Lamira A, Mazzi-Chaves JF, Nicolielo LF, Leoni GB, Silva-Sousa AC, Silva-Sousa YT, et al. CBCT-based assessment of root canal treatment using micro-CT reference images. Imaging Sci Dent 2022; 52: 245-58. https://doi.org/10.5624/isd.20220019
  4. Jain S, Choudhary K, Nagi R, Shukla S, Kaur N, Grover D. New evolution of cone-beam computed tomography in dentistry: combining digital technologies. Imaging Sci Dent 2019; 49: 179-90. https://doi.org/10.5624/isd.2019.49.3.179
  5. Loureiro RM, Sumi DV, Tames HL, Ribeiro SP, Soares CR, Gomes RL, et al. Cross-sectional imaging of third molar-related abnormalities. AJNR Am J Neuroradiol 2020; 41: 1966-74. https://doi.org/10.3174/ajnr.A6747
  6. Cuschieri LA, Schembri-Higgans R, Bezzina N, Betts A, Cortes AR. Importance of 3-dimensional imaging in the early diagnosis of chondroblastic osteosarcoma. Imaging Sci Dent 2023; 53: 247-56. https://doi.org/10.5624/isd.20220223
  7. Pakbaznejad Esmaeili E, Ilo AM, Waltimo-Siren J, Ekholm M. Minimum size and positioning of imaging field for CBCT scans of impacted maxillary canines. Clin Oral Investig 2020; 24: 897-905. https://doi.org/10.1007/s00784-019-02904-1
  8. Ilo AM, Ekholm M, Pakbaznejad Esmaeili E, Waltimo-Siren J. Minimum size and positioning of imaging field for CBCT-scans of impacted lower third molars: a retrospective study. BMC Oral Health 2021; 21: 670.
  9. Augdal TA, Angenete OW, Shi XQ, Sall M, Fischer JM, Nordal E, et al. Cone beam computed tomography in the assessment of TMJ deformity in children with JIA: repeatability of a novel scoring system. BMC Oral Health 2023; 23: 12.
  10. Tyndall DA, Price JB, Tetradis S, Ganz SD, Hildebolt C, Scarfe WC, et al. Position statement of the American Academy of Oral and Maxillofacial Radiology on selection criteria for the use of radiology in dental implantology with emphasis on cone beam computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113: 817-26. https://doi.org/10.1016/j.oooo.2012.03.005
  11. Schulze RK, Drage NA. Cone-beam computed tomography and its applications in dental and maxillofacial radiology. Clin Radiol 2020; 75: 647-57.
  12. Nardi C, Talamonti C, Pallotta S, Saletti P, Calistri L, Cordopatri C, et al. Head and neck effective dose and quantitative assessment of image quality: a study to compare cone beam CT and multislice spiral CT. Dentomaxillofac Radiol 2017; 46: 20170030.
  13. Han M, Kim HJ, Choi JW, Park DY, Han JG. Diagnostic usefulness of cone-beam computed tomography versus multidetector computed tomography for sinonasal structure evaluation. Laryngoscope Investig Orolaryngol 2022; 7: 662-70. https://doi.org/10.1002/lio2.792
  14. Ludlow JB, Ivanovic M. Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008; 106: 106-14. https://doi.org/10.1016/j.tripleo.2008.03.018
  15. Seibold P, Auvinen A, Averbeck D, Bourguignon M, Hartikainen JM, Hoeschen C, et al. Clinical and epidemiological observations on individual radiation sensitivity and susceptibility. Int J Radiat Biol 2020; 96: 324-39. https://doi.org/10.1080/09553002.2019.1665209
  16. Pierce DA, Shimizu Y, Preston DL, Vaeth M, Mabuchi K. Studies of the mortality of atomic bomb survivors. Report 12, Part I. Cancer: 1950-1990. Radiat Res 1996; 146: 1-27. https://doi.org/10.2307/3579391
  17. Yigit T, Yuksel HT, Evirgen S, Kacmaz I, Turkmenoglu A. Evaluation of use of cone beam computed tomography in paediatric patients: a cross-sectional study. Int J Paediatr Dent 2023; 33: 468-76. https://doi.org/10.1111/ipd.13046
  18. Pauwels R, Beinsberger J, Collaert B, Theodorakou C, Rogers J, Walker A, et al. Effective dose range for dental cone beam computed tomography scanners. Eur J Radiol 2012; 81: 267-71. https://doi.org/10.1016/j.ejrad.2010.11.028
  19. Bryce-Atkinson A, de Jong R, Bel A, Aznar MC, Whitfield G, van Herk M. Evaluation of ultra-low-dose paediatric cone-beam computed tomography for image-guided radiotherapy. Clin Oncol(R Coll Radiol) 2020; 32: 835-44. https://doi.org/10.1016/j.clon.2020.09.011
  20. Olch AJ, Alaei P. How low can you go? A CBCT dose reduction study. J Appl Clin Med Phys 2021; 22: 85-9. https://doi.org/10.1002/acm2.13164
  21. Oenning AC, Pauwels R, Stratis A, De Faria Vasconcelos K, Tijskens E, de Grauwe A, et al. Halve the dose while maintaining image quality in paediatric cone beam CT. Sci Rep 2019; 9: 5521.
  22. Son K, Chang J, Lee H, Kim C, Lee T, Cho S, et al. Optimal dose reduction algorithm using an attenuation-based tube current modulation method for cone-beam CT imaging. PLoS One 2018; 13: e0192933.
  23. Kuramoto T, Takarabe S, Shiotsuki K, Shibayama Y, Hamasaki H, Akamine H, et al. X-ray dose reduction using additional copper filtration for dental cone beam CT. Phys Med 2021; 81: 302-7. https://doi.org/10.1016/j.ejmp.2020.11.022
  24. Houfrar J, Ludwig B, Bister D, Nienkemper M, Abkai C, Venugopal A. The effects of additional filtration on image quality and radiation dose in cone beam CT: an in vivo preliminary investigation. Biomed Res Int 2022; 2022: 7031269.
  25. Ludlow JB. A manufacturer's role in reducing the dose of cone beam computed tomography examinations: effect of beam filtration. Dentomaxillofac Radiol 2011; 40: 115-22. https://doi.org/10.1259/dmfr/31708191
  26. Ismanyilov R, Ozgur B. Indications and use of cone beam computed tomography in children and young individuals in a university-based dental hospital. BMC Oral Health 2023; 23: 1033.
  27. de Las Heras Gala H, Torresin A, Dasu A, Rampado O, Delis H, Hernandez Giron I, et al. Quality control in cone-beam computed tomography (CBCT) EFOMP-ESTRO-IAEA protocol (summary report). Phys Med 2017; 39: 67-72. https://doi.org/10.1016/j.ejmp.2017.05.069
  28. Choi H, Yun JP, Lee A, Han SS, Kim SW, Lee C. Deep learning synthesis of cone-beam computed tomography from zero echo time magnetic resonance imaging. Sci Rep 2023; 13: 6031.
  29. Ryu K, Lee C, Han Y, Pang S, Kim YH, Choi C, et al. Multi-planar 2.5D U-Net for image quality enhancement of dental cone-beam CT. PLoS One 2023; 18: e0285608.
  30. Hidalgo Rivas JA, Horner K, Thiruvenkatachari B, Davies J, Theodorakou C. Development of a low-dose protocol for cone beam CT examinations of the anterior maxilla in children. Br J Radiol 2015; 88: 20150559.