References
- Shin, T. H., Lee, D. H., & Kim, S. H. (2024). A study on the depression screening and wearable device integration technology to predict depression risk scales. The Society of Convergence Knowledge Transactions, 12(1), 65-75. DOI : 10.22716/SCKT.2024.12.1.007.
- Lee, J. L., Lee, D. H., & Kim, S. H. (2012). Object relations of depressive disorder patients. Korea Journal of Counseling, 13(2), 585-609. DOI : 10.15703/KJC.13.2.201204.585.
- Nam, J. J., & Cho, M. J. (1997). Approaches to mental health promotion: Focusing on depression status analysis. Health and Welfare Policy Forum, 5, 59-66. DOI : 10.23062/1997.05.9.
- Kwan, H. K. (2009). External family support moderating the effects of economic pressure: Applying family stress model. Family and Culture, 21(2), 111-131. DOI : 10.21478/FAMILY.21.2.200906.005.
- Lee, G. S. (1983). An analysis of economic determinants of migration. KDI Journal of Economic Policy, 5(2), 30-44. DOI : 10.23895/KDIJEP.1983.5.2.30.
- Choi, S. M. (2020). Exploration of self-sufficiency paths in low-income youth: Relationships between emotional self-sufficiency, career preparation behavior, and economic self-sufficiency. Korean Journal of Social Welfare Studies, 51(1), 83-106. DOI : 10.16999/KASWS.2020.51.1.83.
- Yang, H.-C., & Kim, C. G. (2019). An implementation of Python web crawler using thread. Proceedings of the Korea Information Processing Society Conference, 70-72. DOI : 10.3745/PKIPS.Y2019M10A.70.
- Kim, H. K., & Hwang, W. Y. (2020). Proposal for improving data processing performance using Python. The Journal of Korea Institute of Information, Electronics, and Communication Technology, 13(4), 306-311. DOI : 10.17661/JKIIECT.2020.13.4.306.
- Kalaiarasi, K., & Sindhuja, N. (2024). Optimization of stock management system with deficiencies through fuzzy rationale with signed distance method in Seaborn programming tool. Journal of Applied Mathematics & Informatics, 42(2), 379-390. DOI : 10.14317/JAMI.2024.379.
- Kim, J. S., Song, T. M., & Kwon, E. J. (2014). A study on using social big data for expanding analytical knowledge - Domestic big data supply-demand expectation. Knowledge Management Review, 15(3), 169-188. DOI : 10.15813/KMR.2014.15.3.008.
- Lee, W. S. (2024). Operation plan of big data prediction model using cut-off-voting classifier in administrative big data environment. The Journal of the Convergence on Culture Technology, 10(3), 145-154. DOI : 10.17703/JCCT.2024.10.3.145.
- Jung, Y. K., Suk, M. G., & Kim, C. J. (2014). A study on the success factors of big data through an analysis of introduction effect of big data. Journal of Digital Convergence, 12(11), 241-248. DOI : 10.14400/JDC.2014.12.11.241.
- Byung, T. C. (2021). Validation and analysis of human behavior database data for robot learning. Journal of Knowledge Information Technology and Systems, 16(5), 995-1001. DOI : 10.34163/JKITS.2021.16.5.010.
- Suh, Y. Y. (2017). Data analytics for social risk forecasting and assessment of new technology. Journal of the Korean Society of Safety, 32(3), 83-89. DOI : 10.14346/JKOSOS.2017.32.3.83.
- Ha, R., Kim, K., Park, S., & Sim, H. (2020). The effect of debt on depression in young adults. Health and Social Welfare Review, 40(4), 295-331. DOI : 10.15709/HSWR.2020.40.4.295.