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Glutathione Dynamics in the Tumor Microenvironment: 
A Potential Target of Cancer Stem Cells and T Cells
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Glutathione (GSH), the main cellular antioxidant, dynamically influences tumor growth, metastasis, and resistance to 
therapy in the tumor microenvironment (TME), which comprises cancer cells, immune cells, stromal cells, and non-cel-
lular components, including the extracellular matrix, metabolites, hypoxia, and acidity. Cancer stem cells (CSCs) and 
T cells are minor but significant cell subsets of the TME. GSH dynamics influences the fate of CSCs and T cells. 
Here, we explored GSH dynamics in CSCs and T cells within the TME, as well as therapeutic approaches that could 
target these dynamics.
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Introduction 

  The tumor microenvironment (TME) comprises various 
cell types and is critical for tumor progression, relapse, 
metastasis, and therapy resistance (1). Immune cells, fi-
broblasts, endothelial cells, and nerve cells act as pro-tu-
mor and anti-tumor stromal cells. Furthermore, non-cel-
lular components, including the extracellular matrix (ECM), 
metabolites, hypoxia, and acidity, contribute to tumor de-
velopment (1, 2).
  Cancer stem cells (CSCs) are a minor subpopulation of 
cells that are considered the most crucial components of 

the TME for tumor development. CSCs were initially dis-
covered in acute myeloid leukemia in 1994 (3). In solid 
tumors, breast cancer stem cells (BCSCs) were the first 
characterized CSCs as CD44＋CD24−/low population (4). 
CSCs exhibit self-renewal, unlimited proliferation, and 
dormant-state maintenance that are affected by the TME. 
Because CSCs may contribute to cancer recurrence or 
metastasis, understanding the mechanisms that regulate 
the activity and life cycle of CSCs in the TME is important 
for developing effective tumor treatment strategies.
  T cells drive immune responses by counteracting specif-
ic pathogen-derived antigens. During antigen recognition, 
T cells differentiate into multiple types of effector cells 
that confer immunological protection to the host (5). 
However, in the TME, tumor-specific T cells tend to be 
dysfunctional because most tumor antigens are immuno- 
ignorant self-molecules (6). Regardless of the ability of T 
cells to kill tumors, the TME accumulates T cell subsets 
that encourage tumor growth and inhibit effector T cell 
differentiation through the action of diverse components 
of the tumor bed (7). Regulatory T cells (Tregs) are among 
the most potent T cells that dampen effector cell function. 
Tregs maintain immune homeostasis in a normal state, 
but they are excessively enriched in the TME and are as-
sociated with defective effector cell responses and, in turn, 
poor prognosis in patients with malignancy (8). Interle-
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Table 1. Mechanisms underlying GSH regulation of CSCs

CSCs Marker GSH-related mechanism Reference

Breast ALDH＋, mammosphere Chemotherapy increases the expression levels of SLC7A11 
and GCLM in a HIF-1-dependent manner

 (36)

ALDH＋, mammosphere, 
CD44＋CD24−/low

DKK1 which is secreted by BCSCs increases the expression levels 
of SLC7A11 and inhibits ferroptosis

 (44)

CD44＋CD24− SOD2K68Ac promotes the reprogramming of BCSCs by increasing 
the level of mitochondrial H2O2, which decreases GSH 
and stabilizes HIF-2α

 (34)

CD44＋CD24− (M-BCSCs)
ALDH＋ (E-BCSCs)

Inhibition of both GSH and thioredoxin antioxidant systems 
mitigate E-BCSCs, but not M-BCSCs. NAC promotes an E-to-M 
transition of BCSCs 

 (46)

Pancreatic CD133＋ GSH synthesis and recycling-related genes are highly expressed 
in CSCs. GSH or NADPH depletion decreases self-renewal 
and CD133 expression 

 (18)

Colorectal CD44＋, CD133＋, SP, sphere 
formation, and colony 
formation

CD44v8-10 stabilizes SLC7A11 in CSCs. mi-1297 which targets 
SLC7A11 mRNA is reduced in CSCs, increasing the level of GSH

 (26)

Prostate Sphere formation, ALDH＋ Glutamine depletion decreases GSH levels and inhibits CSCs  (19)
Brain Nanog＋, Musashi1＋, Sox2＋, 

Nestin＋
SLC7A11 overexpression increases the makers associated 

with glioblastoma stem cells
 (20)

CD133＋, Sox2＋, Nestin＋ Acidosis stress increases reduced GSH levels 
by promoting the pentose phosphate pathway

 (21)

Stomach CD44＋ CD44v8-10 increases GSH synthesis by interacting 
with SLC7A11

 (27)

Liver CD44＋ CD44 null ameliorates antioxidant capacity by decreasing 
GPX1 and thioredoxin but increasing GSH level

 (22)

Lung ALDH＋CD44＋CD133＋ GSTP1 upregulates lung adenocarcinoma stemness under 
hypoxic conditions

 (23)

AML CD34＋CD38−CD123＋ 
CD45＋CD3−CD19−CellROXhigh

STAT3 promotes GSH synthesis by upregulating MYC 
and SCL1A5

 (24)

Bladder CD44v9＋ CD44v9 is correlated with poor outcomes in muscle-invasive 
bladder cancer patients. Sulfasalazine decreases GSH levels 
by modulating CD44v9-SCL7A11 system

 (28)

GSH: glutathione, CSCs: cancer stem cells, AML: acute myeloid leukemia. GCLM: glutamate-cysteine ligase modifier subunit, BCSCs: breast 
cancer stem cells, SOD2K68Ac: superoxide dismutase acetylation of lysine 68, NAC: N-acetyl cysteine, NADPH: nicotinamide adenine dinu-
cleotide phosphate.

ukin (IL)-17-secreting CD4＋ T (Th17) cells also promote 
tumor progression by enhancing the production of vas-
cular endothelial growth factor (VEGF), prostaglandin E2 
(PGE2), and nitric oxide from tumor and stromal cells, 
which leads to angiogenesis, although the function of Th17 
in the TME remains controversial (9, 10).
  Glutathione (GSH) is a tripeptide made up of gluta-
mate, cysteine, and glycine and is a major intracellular an-
tioxidant that exists at a concentration of mM (11). GSH 
reacts with most reactive oxygen species (ROS) such as 
H2O2, superoxide, and hydroxyl radicals, thereby oxidizing 
itself. GSH is then reduced by the electrons derived from 
reduced nicotinamide adenine dinucleotide phosphate 
(NADPH), generating a redox buffering cycle. This cycle 
not only removes ROS from cells but also regulates vari-

ous redox signaling pathways by modulating the oxidation 
and reduction of cysteine residues of proteins, including 
tumor growth and therapy resistance. Research on devel-
oping real-time GSH monitoring tools within live cells has 
revealed that GSH is dynamically regulated within cells 
and is a critical factor in controlling the stemness and the-
rapeutic potency of stem cells (12-15).
  In this review, we comprehensively discuss how the 
GSH dynamics in CSCs and T cells within the TME in-
duce and regulate tumor development. Furthermore, we 
highlight the recently discovered therapeutic strategies 
that target GSH dynamics. 
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Fig. 1. Glutathione (GSH) dynamics of cancer stem cells (CSCs) in tumor microenvironment (TME). In the TME, the CSCs dynamically modulate 
their GSH regeneration capacity for survival. (A) Cytosolic nicotinamide adenine dinucleotide phosphate (NADPH) was mainly supplied via 
the pentose phosphate pathway (PPP). Under oxidative stress, glyceraldehyde 3-phosphate dehydrogenase is inactivated via the oxidation of 
cysteine thiol residues at its active site, and glucose 6-phosphate dehydrogenase (G6PD) is activated by ataxia-telangiectasia mutated ser-
ine/threonine kinase (ATM), leading to the potentiation of PPP. (B) Cytosolic GSH synthesized from glutamate, cysteine, and glycine can 
scavenge reactive oxygen species (ROS) via glutathione peroxidase (GPX) and can be regenerated by glutathione reductase (GSR) with NADPH, 
leading to the generation of a redox buffering cycle. (C) In the mitochondrial matrix, mitochondrial ROS (mtROS) are produced via superoxide 
dismutase 2 (SOD2) acetylation by GCN5L1 and can be removed by mitochondrial GSH and NADPH pools. (D) Plasma membrane is protected 
by GPX4 from lipid peroxidation and ferroptosis. GSH and oleic acid present in the lymphatic vessels inhibit CSCs’ ferroptosis. (E) Cytosolic 
NADPH is produced by isocitrate dehydrogenase 1 (IDH1). (F) Mitochondrial NADPH is supplied by IDH2 which transforms isocitrate to 
α-ketoglutarate (α-KG) as a reaction of the citric acid cycle. α-KG is also produced by mitochondrial glutaminase (GLS) and the glutamine 
transamidase reaction. (G, H) Cytosolic NADPH is produced by malic enzyme 1 (ME1, G) and the folate pathway (H). (I) CSCs derived-DKK1 
inhibits Wnt signaling and increases SLC7A11 expression, leading to the inhibition of ferroptosis. Cys2: cysteine, DHA: dehydroascorbate, 
F1,6BP: fructose 1,6-bisphosphate, G3P: glyceraldehyde 3-phosphate, G6P: glucose 6-phosphate, GSSG: glutathione disulfide, OAA: oxaloa-
cetate, THF: tetrahydrofolate.

CSCs and GSH Dynamics in TME

CSCs and GSH in tumor heterogeneity
  Technical advances in nucleotide sequencing and mo-
lecular analyses have made tumor analysis more precise, 
revealing that tumors occur and evolve with intertumoral 
and intratumoral heterogeneity (1). Intertumoral hetero-
geneity is caused by various cancers, resulting in different 
tumor characteristics for each patient. In contrast, intra-
tumoral heterogeneity arises from the dynamic develop-
ment of cancer because of genomic instability and clonal 
evolution/selection and is a major factor that complicates 
cancer treatment. CSCs are considered the primary cells 
contributing to intratumoral heterogeneity owing to their 
characteristics of dissemination and resistance to therapy. 
CSCs are heterogeneous, with different markers depend-
ing on the organ in which they arise (Table 1).
  Metabolic reprogramming, which depends on the TME, 

is crucial for tumor survival (2). Cancer cells tend to local-
ize mostly under oxidative stress owing to the high levels 
of ROS generated by oncogenic signals, hypoxia, and acti-
vated immune cells. ROS are required for tumor develop-
ment, including activation of proliferation signal trans-
duction and gaining additional genetic mutation hits; 
however, excess ROS are detrimental because they damage 
macromolecules, including DNA, proteins, and lipids. 
Antioxidant systems are required to adjust the redox bal-
ance in tumors for survival and propagation. GSH is a ma-
jor tumor antioxidant that removes excessive ROS and 
regulates tumor redox signals. In addition, aging is a cru-
cial cause of tumor development that decreases cellular GSH 
levels (16). The levels of GSH vary and dynamically 
change among individual cancer cell lines (17) and CSCs 
(Table 1) (18-24) in response to the TME, favoring tumor 
development. Therefore, tumor GSH heterogeneity should 
be considered an important factor for a complete under-
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Fig. 2. Transcriptional factors (TFs) regulating glutathione (GSH) dynamics in cancer stem cells. TFs and their targeting genes are involved 
in GSH dynamics. ROS: reactive oxygen species, NADPH: nicotinamide adenine dinucleotide phosphate.

standing of tumor development.

GSH dynamics in CSCs
  In CSCs, GSH is dynamically regulated by synthesis 
and regeneration cycles (Fig. 1). GSH is L-γ-glutamyl-L- 
cysteinyl-glycine synthesized by glutamate-cysteine ligase 
(GCL) and glutathione synthetase (GSS) in the cytosol. 
GCL is a heterodimeric enzyme composed of two subunits: 
the glutamate-cysteine ligase catalytic subunit (GCLC) and 
the glutamate-cysteine ligase modifier subunit (GCLM), 
which catalyze a rate-limiting reaction in GSH synthesis. 
As cytoplasmic cysteine levels are tightly controlled owing 
to cysteine toxicity (25), cysteine must be maintained at 
low concentrations within cells and transported from out-
side the cells through SLC7A11 (also referred to as xCT), 
a cystine-glutamate antiporter, for GSH synthesis. SLC7A11 
is stabilized by its interaction with CD44 variants (CD44v), 
which are expressed in CSCs derived from the colorectum 
(26), stomach (27), and bladder (28), leading to increased 
intracellular GSH levels (Table 1). Glutaminase (GLS) 
produces glutamate from glutamine, which is then trans-
ported into the cells through SLC1A5, a sodium-depend-
ent neutral amino acid transporter. Glycine can be sup-
plied by SLC6A9 (also referred to as sodium- and chlor-
ide-dependent glycine transporter 1) and de novo synthe-
sized from 3-phosphoglycerate, an intermediate of glyco-
lysis. The glycine synthesis can be regulated by p53. TP53- 
inducible glycolysis and apoptosis regulator (TIGAR) is 
p53-dependently expressed, inhibits glycolysis through fruc-
tose-2,6-bisphosphatase activity, and decreases glycine syn-
thesis. However, TIGAR activates the pentose phosphate 
pathway (PPP), which is the main route of NADPH pro-

duction, and decreases ROS production and cell death (Fig. 
1A) (29). Moreover, under hypoxic conditions, TIGAR is 
localized to the mitochondria and activates hexokinase 2 
by directly binding to decrease mitochondrial ROS (mtROS) 
and protect cells from apoptosis (30). Furthermore, p53 
indirectly increases GSH synthesis under serine and gly-
cine starvation conditions, as p53 arrests the cell cycle by 
inducing p21, and de novo-synthesized glycine is utilized 
for GSH, but not purines (31).
  GSH removes peroxides by reacting with glutathione per-
oxidase (GPX), which is encoded by eight different isozymes 
(GPX1-8) on human chromosomes. Human GPX1, GPX2, 
GPX3, GPX4, and GPX6 utilize selenocysteine as their active 
site. GPX1 inactivates cytoplasmic and mitochondrial per-
oxides (Fig. 1B, 1C) and GPX4 removes membrane lipid per-
oxides (Fig. 1D), oxidizing GSH into glutathione disulfide 
(GSSG, an oxidized GSH). GSH can be regenerated by gluta-
thione reductase (GSR) using NADPH as an electron donor 
to generate a redox-buffering cycle (Fig. 1B-1D). NADPH 
can be supplied by the enzymatic reactions of: (1) glucose- 
6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate 
dehydrogenase (PGD) in PPP (Fig. 1A); (2) isocitrate de-
hydrogenase 1 and 2 (IDH1/2) (Fig. 1E, 1F); (3) malic en-
zyme 1 (ME1) (Fig. 1G); and (4) 10-formyltetrahydrofolate 
dehydrogenase 1 and 2 (ALDH1L1/2) and methylenetetrahy-
drofolate dehydrogenase 1 and 2 (MTHFD1/2) in the folate 
pathway (Fig. 1H) (32, 33).
  The GSH redox buffering system is regulated by various 
transcription factors (TFs) (Fig. 2). Nuclear factor eryth-
roid 2-related factor 2 (NRF2) is the master TF for genes 
that synthesize GSH and generate NADPH. Under normal 
conditions, NRF2 is blocked by binding to Kelch-like 
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Fig. 3. Regulation of cancer stem cells (CSCs) by glutathione (GSH) dynamics during tumorigenesis stages. (A) According to tumorigenesis 
stages, reactive oxygen species (ROS) differently regulate the expression levels of GSH-related and metastatic genes in CSCs. (B, C) CSCs 
can be classified into mesenchymal-type cells (M-CSCs) and epithelial-type cells (E-CSCs) differentiated by EMT and MET, respectively. 
Both processes are critically regulated by redox signaling (B). M-CSCs are dependent on glycolysis and superoxide dismutase acetylation 
of lysine 68 (SOD2K68Ac)-mediated mitochondrial ROS (mtROS). E-CSCs are dependent on oxidative phosphorylation (OXPHOS) and basal 
ROS. E-CSCs are more dependent on GSH levels compared to M-CSCs for their survival (C). NOX: NADPH (nicotinamide adenine dinucleo-
tide phosphate) oxidase, TGF-β: transforming growth factor-β, GFs: growth factors, 2DG: 2-deoxyglucose, EMT: epithelial-mesenchymal 
transition, MET: mesenchymal-epithelial transition. 

ECH-associated protein 1 (KEAP1) and subsequent degra-
dation in the cytosol via the ubiquitin-proteasomal system. 
Oxidative stress oxidizes the redox-sensitive cysteine resi-
dues of KEAP1, releasing NRF2. Free NRF2 moves into 
the nucleus and binds to antioxidant response elements lo-
cated in the promoters of genes encoding the GSH redox 
buffering system.

Regulation of CSC stemness by GSH dynamics
  The capacity of CSCs to self-renew, metastasize, and 
tolerate cancer therapy is regulated by cellular redox sys-
tems including GSH. BCSCs are reprogrammed by mi-
tochondrial superoxide dismutase acetylation of lysine 68 
(SOD2K68Ac)-promoted mtROS, which induces the ex-
pression of OCT4, SOX2, and NANOG through the stabi-
lization of HIF-2α, favoring the upregulation of their 
stemness (Fig. 1) (34). HIF-2α also induces the expre-
ssion of SLC1A5, a mitochondrial glutamine transporter, 
leading to increased GSH synthesis and drug resistance 
(Fig. 1) (35). In contrast, Lu et al. (36) demonstrated that 

chemotherapy increased the expression levels of SLC7A11 
and GCLM in an HIF-1α-dependent manner, leading to 
the upregulation of GSH synthesis and NANOG ex-
pression in BCSCs.
  The GSH redox buffering system is important for can-
cer cell metastasis. Disseminated cells exhibit reduced glu-
cose uptake, leading to increased oxidative stress-induced 
cell death (37, 38). Oncogenes increase glucose uptake and 
NADPH generation through the PPP, leading to decreased 
ROS levels and increased cell survival (39). In KRAS-driv-
en lung cancer, N-acetyl cysteine (NAC), a known pre-
cursor or mimetic of GSH, induces the transcriptional ac-
tivation of BACH1-dependent hexokinase 2 and glycer-
aldehyde 3-phosphate dehydrogenase, promoting glycolysis- 
induced metastasis (40). NAC treatment also promotes 
melanoma metastasis, and metastasizing melanoma cells 
require metabolic changes with the induction of folate 
pathway enzymes, including ALDH1L1/2 and MTHFD1/2, 
for NADPH generation (Fig. 1H) (33). As ECM detach-
ment, which is the initial process of cancer metastasis, in-
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creases intracellular ROS levels, cancer cells rewire their 
redox metabolism for metastasis (41). During redox re-
programming, the generation of mitochondrial NADPH 
by IDH1 and IDH2 is critical for cell growth without an-
chorage, suggesting that regeneration of mitochondrial 
GSH is vital for CSC proliferation during metastasis (Fig. 
1C, 1F) (42). Melanoma cells metastasized through blood 
are susceptible to GPX4 inhibition-mediated ferroptosis, 
but melanoma cells through lymphatic vessels do not re-
sult from high levels of GSH and oleic acid in lymph fluid 
that inhibit lipid peroxidation (43). Furthermore, DKK1 
(dickkopf-related protein 1) secreted by BCSCs inhibits 
the WNT signaling pathway and induces SLC7A11 ex-
pression, protecting BCSCs from ferroptosis (Fig. 1I) (44).

Targeting CSCs by controlling GSH dynamics
  The GSH redox buffering system appears to have differ-
ent and complicated effects on tumorigenesis depending on 
the tumor stage. In the initial stage of tumorigenesis, the 
GSH system is protective because the genetic mutation rate 
is increased, and ROS can potentiate cellular growth sig-
naling pathways by inhibiting phosphatases such as PTEN 
(Fig. 3A) (45). However, in the later stages of tumori-
genesis, treatment with antioxidants that compensate for 
GSH promotes metastasis of breast cancer, lung cancer, 
and melanoma by increasing the expression of metastatic 
genes and the survival rate of CSCs (33, 40, 43, 46). In 
clinical trials, dietary supplementation with antioxidants 
does not typically decrease cancer occurrence (47), but is 
associated with higher rates of lung and prostate cancer oc-
currence and mortality (48-50). These results suggest that 
GSH depletion is beneficial for tumor treatment.
  GSH can be depleted by treatment with buthionine sul-
foximine (BSO), an inhibitor of GCL, which is the rate- 
limiting step in GSH synthesis. However, BSO showed not 
only liver toxicity (51) but also resistance in most cancer 
cell lines (52), implying that GSH is dispensable owing 
to compensatory pathways. The thioredoxin (TRX) system 
has been proposed as an alternative to antioxidant path-
ways. Inhibition of both the GSH and TRX systems results 
in the synthetic lethality of cancer cells (52). BCSCs are 
also sensitive to combined targeting of the GSH and TRX 
pathways (Fig. 3B) (46). Deubiquitinase (DUB) pathway 
is another compensating pathway that protects cancer cells 
from ER and proteotoxic stress upon inhibition of GSH 
synthesis (53). Thus, blocking both the GSH and DUB 
pathways synergistically inhibits tumor growth.
  NADPH is essential for GSH regeneration during redox 
buffering NADPH can be generated by G6PD, PGD, ME1, 
IDH1/2, ALDH1L1/2, and MTHFD1/2 (Fig. 1A, 1E-1H). 

Methotrexate, a dihydrofolate dehydrogenase inhibitor, 
ameliorates melanoma metastasis by inhibiting NADPH 
generation via the folate pathway (Fig. 1H) (33); however, 
it also blocks the synthesis of dTMP and glycine, a pre-
cursor of GSH. In contrast, dietary folate supplementation 
facilitates the advancement and worsening of breast cancer 
(54, 55), possibly by contributing to NADPH production. 
Ascorbate exerts anti-cancer effects by depleting GSH and 
NADPH in cancer cells (Fig. 1) (56). Dysregulation of 
GSH systems is also associated with iron-dependent lipid 
peroxidation, leading to the ferroptotic cell death of CSCs 
during tumor development (Fig. 1D) (43, 44). Indeed, 
SLC7A11 inhibitors such as erastin and sulfasalazine pro-
mote ferroptosis in CSCs by downregulating GSH syn-
thesis (57). GPX4 and NADPH-generating enzymes are 
promising targets for ferroptosis in CSCs (Fig. 1) (58). 
GLS is another possible target for controlling GSH dy-
namics because GLS inhibition reduces the glutamate and 
cysteine levels required for GSH synthesis (Fig. 1) (59). 
CB-893, a GLS1 inhibitor, was developed to KEAP1 mu-
tant lung cancer (60).

Potential Role of GSH Dynamics in Modulating T 
Cells in the TME

Basic understanding of T cell activation
  T cells are integral to adaptive immunity and crucial 
in protecting the host against pathogens and in exacerbat-
ing immune-related diseases (Fig. 4A). For full activation, 
T cells receive signals 1, 2, and 3 via the cell surface recep-
tors. Signal 1 is initiated by the T cell receptor (TCR), 
which recognizes the complex of antigenic peptides and 
major histocompatibility complex classes I and II (MHC 
I and MHC II) of antigen-presenting cells (APCs). Signal 
2, often referred to as co-stimulation, is essential for the 
complete activation of T cells by fortifying signal 1. This 
signal is typically generated by the ligation of co-stim-
ulatory ligands on APCs with their receptors on T cells. 
One of the most well-studied pairs of molecules involved 
in this process is CD28 on T cells, and CD80 (B7-1) or 
CD86 (B7-2) on APCs. The binding of CD28 to CD80 or 
CD86 provides critical survival signals to T cells, leading 
to an increased expression of IL-2 and its receptor, IL-2R, 
to drive T cell proliferation. Signal 3 in T cell primarily 
involves the action of cytokines that direct the differenti-
ation and functional maturation of T cells. After a T cell 
receives signal 1 through TCR engagement with the pep-
tide-MHC complex and signal 2 through co-stimulatory 
interactions (such as CD28 binding to CD80/CD86), sig-
nal 3 determines the type of immune response that devel-
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Fig. 4. Mechanistic insights into the network between T cell and stem cells. (A) Background information on how CD4＋ T helper subsets 
are generated. (B) Each type of CD4＋ T helper subset plays a distinct role in the fate of intestinal stem cells. Effector cytokines (interferon 
[IFN]-γ, interleukin [IL]-4, IL-17A) from T helper 1 (Th1), Th2, and Th17 mediated the differentiation of Lgr5＋ intestinal stem cells, which 
leads to the generation of goblet cells, tuft cells, and Paneth cells. On the other hand, IL-10 from Tregs induce self-renewal of intestinal 
stem cells. (C) IL-17 from Tregs promotes the stemness of colorectal cancer by upregulating CD44, CD133, and EpCAM on cancer stem 
cells (CSCs). Tregs-derived prostaglandin E2 (PGE2) activates NF-κB, expanding CSCs. In hypoxic conditions, transforming growth factor-β
(TGF-β) from Tregs induces vascular endothelial growth factor (VEGF), which enhances angiogenesis to nourish CSCs. (D) CSCs secrete 
IL-23, IL-6, IL-8, IL-1β, which polarize Th17 differentiation. Then, IL-17 and IL-22 from Th17 help, in part, CSC survival. CSCs induce 
the differentiation and recruitment of Tregs. TGF-β and IDO 1 from CSCs act on naïve CD4＋ T cells to differentiate into Tregs. CCL2 
and CCL5 from CSCs recruit Treg in CCR4 and CCR5-dependent manners. Moreover, CSCs not only upregulate immune checkpoint mole-
cules such as PDL1 and CTLA4 but also reduce MHC I expression, which hinders anti-tumor T cell responses.

ops by influencing the T cell differentiation pathway. 
Signal 3 is defined by the cytokine environment surround-
ing the T cells during initial activation. Different cytokines 
promote the differentiation of T cells into various subsets 
of effector cells, each tailored to combat specific pathogens 
or regulate immune reactions. For instance, IL-12, se-
creted by APCs and other immune cells in response to cer-
tain bacterial or viral infections, promotes T helper 1 (Th1) 
differentiation. Th1 cells are particularly effective against 
intracellular pathogens and are involved in activating 
macrophages and inducing interferon (IFN)-γ production. 
IL-4, produced by APCs and other T cells, drives the dif-
ferentiation of T cells into Th2 cells. Th2 cells are essen-
tial for combating extracellular parasites and play a crit-
ical role in allergic responses, primarily through the pro-
duction of cytokines, such as IL-4, IL-5, and IL-13. 
Transforming growth factor-β (TGF-β) and IL-6 are im-
portant for the differentiation of T cells into Th17 cells. 
Th17 cells are important for the defense against fungal 
and bacterial infections and are involved in inflammation 
and autoimmunity. Tregs are induced by TGF-β, which 
maintains immune tolerance. Collectively, the regulation 
of these signals is vital for the functioning and balance 
of the immune system, which restricts host-damage threats.

T cell-stem cell axis in the TME
  Crosstalk between T cells and intestinal stem cells: 
Unlike the universal expression of MHC I, MHC II is ex-
pressed only on APCs such as dendritic cells (DCs). Given 
that the TCRs of CD4＋ T cells sense antigenic peptides 
loaded onto MHC II molecules, the biology of CD4＋ T 
cells have been closely linked to APCs. Recently, however, 
using single-cell RNA sequencing, Biton et al. (61) found 
that a subset of Lgr5＋ intestinal stem cells (ISCs) ex-
presses MHC II molecules and that CD4＋ T cells recog-
nize and respond to antigens presented by ISCs (Fig. 4B). 
This observation indicates that MHC II on ISCs is func-
tionally intact and that T cells and their cytokines can in-
fluence ISCs. Specifically, they demonstrated inflamma-
tory cytokines like IFN-γ and IL-17 are linked to promot-
ing differentiation processes, whereas IL-10 from Tregs 
tends to encourage stem cell maintenance. These inter-
actions significantly affect the cellular composition of the 
intestinal lining under both normal and inflammatory 
conditions. Moreover, experimental manipulations that al-
ter T cell dynamics or MHC II expression in ISCs have 
demonstrated shifts in epithelial dynamics and cell fate 
during immune responses, highlighting the dual role of 
ISCs in tissue regeneration and immune function.
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  Crosstalk between T cell and CSCs: Compelling re-
search has thoroughly demonstrated how tumor masses in-
teract with T cells; however, studies have only recently be-
gun to clarify the interactions between T cells and CSCs 
in the TME. Notably, the network between Tregs and 
CSCs has been extensively investigated because Tregs play 
an integral role in the TME, as they have multiple arms 
not only for suppressing effector T cells but also for accel-
erating tumor growth/metastasis (62). In general, CSCs 
promote the accumulation of Tregs both directly and 
indirectly. CSCs actively attract Tregs by secreting chemo-
kines CCL2 and CCL5 in a preclinical glioblastoma mod-
el (Fig. 4D) (63). Tregs migration by CCL2 was reliant 
on the presence of CCR4, as tumor infiltration is reduced 
in mice lacking CCR4. In a human ovarian cancer cell 
line, elevated levels of CCL5 facilitated Treg migration 
through a CCR5-dependent mechanism (64). CCL2 and 
CCL5 are also essential for myeloid cell migration, which 
indirectly facilitates Treg infiltration into the TME (63, 
65). Furthermore, CSCs derived from multiple cell lines 
of cancer show increased levels of indoleamine 2,3-dioxy-
genase 1 and TGF-β, which enhances the recruitment 
and development of Tregs (66, 67). On the other hand, 
Tregs also benefit CSCs development. Tregs secrete PGE2, 
which accelerates the growth and migration of CSCs in 
a colorectal mouse model via the activation of NF-κB 
(Fig. 4C) (68). In the hypoxic TME, Tregs produce a sig-
nificant amount of VEGF, which mediates angiogenesis 
and enhances the expansion of CSCs (69).
  IL-17 released by Th17 cells increases the self-renewal 
capabilities of CSCs in various tumor models (70). Other 
Th17 cytokine, IL-22, also triggers STAT3 phosphor-
ylation in tumor cells (71). STAT3 may serve as a crucial 
element in regulating the stemness and expansion of CSCs 
by maintaining their stem-like characteristics and the ex-
pression of stemness-associated genes, including Sox2, 
Nanog, and Oct4 (72). A recent study on the role of Tregs 
in colorectal cancer showed that Tregs express IL-17 un-
der hypoxic conditions, and these IL-17＋ Tregs contribute 
to the expansion of CSCs by upregulating stemness mark-
ers, such as CD44, EpCAM, and ALDH (Fig. 4C) (73).
  CSCs evade the immune system by increasing the ex-
pression of immune checkpoint ligands. In multiple can-
cers such as gastric, breast, malignant mesothelioma, and 
bladder, there is a correlation between the expression of 
PD-L1 and CSC markers in aggressive tumors (74). Addi-
tionally, the levels of cytotoxic T Lymphocyte antigen 4 
(CTLA-4) are higher in CSCs than those in normal cancer 
cells (75). CTLA-4, which functions as an analog of CD28, 
impedes T cell activation by hijacking CD80/86. More-

over, CTLA-4 presence in CSCs enhances the expansion 
of Tregs, which primarily suppress the anti-tumor T cell 
response (76). Furthermore, CSCs avoid being killed by 
cytotoxic CD8＋ T cells by downregulating the expression 
of MHC I molecules (77).

Redox signaling determines the fate of T cell
  Cellular redox reactions are tightly regulated by GSH 
dynamics and are essential for various cellular functions. 
Among the products of redox reactions, ROS are asso-
ciated with a broad spectrum of T cell functions and fate 
(78). There are two major sources of ROS in T cells. 
Initially, NADPH oxidase (NOX) is activated by TCR 
stimulation, leading to the accumulation of cytosolic ROS 
in T cells (79). Subsequently, T cell generate adenosine 
triphosphate (ATP) to support the metabolic demand for 
their survival and function. Mitochondria are essential for 
ATP production. It drives multiple oxidative reactions of 
the TCA cycle products, NADH and FADH2, which acti-
vate the electron transport chain for a proton gradient 
across the mitochondrial membrane. This gap facilitates 
proton flow to activate ATP synthase, which generates 
ATP (79). During this process, the antioxidant system is 
activated to modulate redox homeostasis. Normally, anti-
oxidant systems comprise antioxidant enzymes, such as 
SODs, catalases, glutaredoxins, sulfiredoxins, GPXs, perox-
iredoxins, TRXs, thioredoxin reductases, methionine sulf-
oxide reductases, GSRs, and non-enzymatic molecules, 
such as pyruvate, GSH, ascorbate, oxaloacetate, and al-
pha-ketoglutarate (80).
  There are multiple mechanisms by which ROS regulate 
T cell fate. H2O2, a member of the ROS family, can bind 
to cysteine residues of signaling molecules to mediate post- 
translational modifications through its oxidizing effects 
(Fig. 5A) (81). Because excessive oxidation by ROS results 
in damage to T cells via the disruption of DNA and pro-
teins, antioxidant systems should act immediately after 
ROS generation. As mentioned previously, GSH plays an 
integral role in ROS buffering. Given that cysteine and its 
thiol groups are the principal components of GSH, the im-
mune system has evolved to utilize them for redox 
homeostasis. Cysteine secreted by DCs is taken up by T 
cells, which increase GSH levels (82). GSH maintains cell 
surface thiols in a reduced state and titrates intracellular 
H2O2 to a level that modulates DNA synthesis and epi-
genetic control (83). Moreover, T cells, DCs, and Tregs se-
crete another type of antioxidant, TRX, which preserves 
the reduced form of thiols on the cell surface (84). Tregs 
suppress the release of cysteine from DCs in a CTLA4- 
dependent manner, which in turn decreases the GSH lev-
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Fig. 5. The network of redox signaling for determining the fate of T cells. (A) Superoxide radicals are generated at various subcellular 
spaces and undergo enzymatic conversion into H2O2 by superoxide dismutase (SOD). Glutathione (GSH) reduces H2O2 levels by converting 
it into water. Upon T cell receptor (TCR) stimulation, NOX becomes activated to generate H2O2. H2O2 selectively oxidizes thiol groups 
on the surface or cytosol of T cells, modulating diverse cellular processes, including DNA synthesis, epigenetic regulation and post-transla-
tional modifications. Cysteine from antigen-presenting cells (APCs) is resorbed by T cells and assimilated into an enzymatic process generat-
ing GSH. GSH preserves the reduced status of thiol on the surface of the cell, mitigating H2O2 effects. Thioredoxin (TRX) synthesized 
by T cells, APCs, and Tregs contribute to maintaining the thiol group on the cell surface. (B) Antigen-stimulated T cells express active 
NOX that generates reactive oxygen species (ROS) in the cytosol. ROS induce conformational changes in Keap1, which leads to Nrf2 
translocation into the nucleus. Nrf2 binds to antioxidant response elements (AREs) in the promoter region of glutamate-cysteine ligase cata-
lytic subunit (GCLC) catalyzing GSH synthesis. This figure depicts how NOX, Keap1, and GCLC knock-out affect the function of T cells 
in various disease conditions. (C) ROS stabilizes SENP3 that drives deSUMOylation of BACH2, which potentiates Tregs expansion through 
enhancing Foxp3 expression. Moreover, ROS mediates H3K27 acetylation at Foxp3 promoter, which accelerates the transcription of Foxp3 
gene. Conversely, mitochondrial ROS accumulation in autoimmune conditions causes DNA damage in Tregs, causing the death of Tregs. 
NOX: NADPH (nicotinamide adenine dinucleotide phosphate) oxidase.

els in T cells (Fig. 5A) (85). This reduced GSH level per-
mits ROS accumulation, thereby exerting a detrimental ef-
fect on T cell activation.
  Diverse preclinical experiments have been performed 
using genetic and chemical interventions to explore the 
significance of redox signaling in disease settings. The ge-
netic ablation of genes that modulate ROS generation has 
provided insights into their roles in the fate of T cells. 
In a mouse model of arthritis, NOX deletion reduced cyto-
solic ROS levels in CD4＋ T cells. This outcome causes 
the expansion of Th1 and Th17 cells while decreasing 
Treg abundance, which exacerbates arthritis severity (Fig. 
5B) (86). This result demonstrates that ROS signaling 
maintains immune homeostasis by balancing the ratio of 
inflammatory T cells to Tregs.
  Another study focused on the function of the Nrf2 neg-
ative regulator Keap1. Upon Keap1 deletion in mice, cel-
lular ROS levels dramatically decrease owing to the en-
hanced antioxidant capacity of Nrf2 (Fig. 5A) (87). Con-
comitantly, this leads to the expansion of Tregs and reduc-
tion of Th1 and Th17 cells, conferring protection against 

ischemia-reperfusion-induced acute kidney injury (Fig. 
5A) (87). This tendency has been confirmed in a glu-
cose-aggravated autoimmune condition as well (88). High 
glucose supplementation preferentially converts CD4＋ T 
cells into autoimmune Th17 cells, displaying elevated lev-
els of mtROS. By reversing mtROS via the antioxidant 
MitoQ, Th17 cells return to the level in healthy animals, 
which contributes to the mitigation of autoimmune path-
ology (88). Collectively, these results attempted to modu-
late ROS generation to investigate how the redox status 
affects the fate of T cells; however, because opposite con-
sequences were observed at low ROS levels, the issue re-
mains unclear.
  The complex role of ROS in T cells has been elucidated 
under GSH-deficient conditions (89). The conditional de-
letion of GCLC prevents GSH production. In the absence 
of GCLC, T cells showed normal activation at the early 
stage of TCR stimulation but were unable to become in-
tact effector cells. This resulted from a defect in the 
Myc-mediated metabolic process in the absence of GSH, 
which triggered autoimmune resistance in mice by re-
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ducing the number of Th1 and Th17 cells (Fig. 5B). This 
study suggests that T cells are extremely sensitive to ROS 
levels, which presumably supports the understanding of 
the controversies reviewed in an earlier section.
  Tregs control immune homeostasis by restricting aber-
rant inflammation; however, in the TME, they support tu-
mor growth. The nature of Tregs is governed by ROS 
signaling. The complex network of Tregs is critical for 
maintaining Tregs, and the TF BACH2 is indispensable 
for Treg stability, which results from the BACH2-media-
ted repression of the effector T cell gene signature (90). 
ROS mediate SUMOylation of BACH2 and supports the 
suppressive activity of Tregs (91). SUMOylation is a post- 
translational modification that depends on the extent to 
which SUMO binds to target proteins. This process is co-
ordinated by several enzymes that add or remove SUMO 
from proteins and the stability and localization of TFs are 
determined by SUMOylation (92, 93). Conditional dele-
tion of the deSUMOylating enzyme SUMO-specific pro-
tease 3 (SENP3), in CD4＋ T cells disrupted immune ho-
meostasis in mice, expanding the inflammatory pop-
ulation of T cells (91). However, CD4＋ T cells exhibited 
activated phenotypes in response to in vitro TCR stim-
ulation regardless of SENP3, but SENP3 deficiency in 
Foxp3-expressing cells reduced the quantity of Tregs. This 
indicates that SENP3 preserves immune homeostasis by 
promoting Treg maintenance. Mechanistically, SENP3 
deSUMOylated BACH2, rendering BACH2 remained in 
the nucleus (Fig. 5C). This localization enhances the sta-
bility of Foxp3 and represses the transcriptional network 
of inflammation, promoting the Treg-mediated exacer-
bation of tumor growth. During this process, ROS induced 
SENP3 accumulation, indicating that the redox status af-
fects SUMOylation in Tregs (Fig. 5C). Recently, epi-
genetic regulation of Tregs by ROS was identified in the 
context of bile acid-mediated Treg induction (94). During 
Treg differentiation, one of the bile acid metabolites, iso-
alloLCA, increased mtROS levels in CD4＋ T cells and en-
hanced the expansion of Tregs (Fig. 5C). mtROS caused 
elevated levels of H3K27 acetylation at the Fopx3 pro-
moter (Fig. 5C), accelerating the transcription of Foxp3.
  As observed in T cells, ROS also play a contradictory 
role in Tregs. Under autoimmune conditions, Tregs fail 
to adapt to altered mitochondrial metabolism, which leads 
to mtROS accumulation and decreased DNA stability (95). 
DNA damage in Tregs causes cell death and disrupts 
Treg-mediated immune homeostasis (Fig. 5C). Collectively, 
targeting ROS signaling is expected to pave the way for 
the development of T cell-modulating therapeutics; how-
ever, further investigation of the spatiotemporal functions 

of ROS in T cells is needed.

Future Perspectives and Conclusions

  GSH dynamics in the TME critically affect the fate of 
CSCs and T cells. In CSCs, oxidative stress induces 
NRF2-dependent activation of the GSH antioxidant sys-
tem, which may promote differentiation into bulk tumor 
cells (Fig. 3B, 3C) (46). The mtGSH dynamics in CSCs 
might regulate their stemness via scavenging mtROS de-
rived from SOD2K68Ac which activate HIF-2α-dependent 
pluripotent TFs (Fig. 1, 3B) (34). Membrane GSH protects 
against membrane lipid peroxidation and ferroptosis and 
enhances metastasis (43, 44, 57). Simultaneously, the 
pro-tumoral function of T cells in the TME presents a sig-
nificant barrier to achieving effective antitumor activity. 
Deleting these T cells has been effective in preclinical 
tests for cancer therapy, but its efficacy and safety should 
be proven to treat cancer patients in the clinic. Targeting 
GSH dynamics may become another option to modulate 
T cells in the TME, based on the compelling evidence sug-
gested here. The function of Tregs/Th17 cells is tightly 
regulated by multiple mechanisms of the REDOX re-
action, and these T cells aggravate tumor severity by com-
municating with CSCs via physical contact and cytokines. 
Because CSCs are also regulated by GSH levels, exploring 
the GSH code would provide clues for deciphering the 
network of CSCs and T cells in the TME. Therefore, the 
GSH dynamics in the TME may be a potential target for 
tumor therapy. However, the GSH antioxidant system is 
replaced by the TRX and DUB pathways in CSCs (Fig. 
3B). The combinatorial targeting of both the GSH system 
and certain compensation pathways results in synthetic le-
thality (46, 52, 53, 59, 96, 97), suggesting that cellular anti-
oxidant systems are good candidates for combination ther-
apy with other cancer drugs (32, 98). To develop efficient 
strategies for tumor treatment, accurate tools for the tem-
poral and spatial analysis of GSH dynamics within CSCs 
and T cells in the TME are required. Recent advances 
such as real-time live-cell GSH monitoring probes may be 
helpful (12-15).
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