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Spinal cord injury (SCI) is a serious nervous system disease that usually leads to the impairment of the motor, sensory, 
and autonomic nervous functions of the spinal cord, and it places a heavy burden on families and healthcare systems 
every year. Due to the complex pathophysiological mechanism of SCI and the poor ability of neurons to regenerate, 
the current treatment scheme has very limited effects on the recovery of spinal cord function. In addition, due to 
their unique advantages, exosomes can be used as carriers for cargo transport. In recent years, some studies have con-
firmed that treatment with mesenchymal stem cells (MSCs) can promote the recovery of SCI nerve function. The ther-
apeutic effect of MSCs is mainly related to exosomes secreted by MSCs, and exosomes may have great potential in 
SCI therapy. In this review, we summarized the repair mechanism of mesenchymal stem cells-derived exosomes 
(MSCs-Exos) in SCI treatment and discussed the microRNAs related to SCI treatment based on MSCs-Exos and their 
mechanism of action, which is helpful to further understand the role of exosomes in SCI.
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Introduction 

  Spinal cord injury (SCI) is a serious neurological dis-
ease and constitutes a considerable portion of the global 

injury burden (1, 2). It has been reported that SCI has 
a high incidence worldwide; the highest incidence in the 
United States of America is approximately 906 per mil-
lion, and the most common cause is traffic accidents (3). 
Injury to the spinal cord could cause damage to the motor, 
sensory, and autonomic functions of the spinal cord and 
physical, social, or psychological damage to patients (4). 
Moreover, it places a substantial burden on families and 
healthcare systems (5, 6).
  At present, the main measures to improve the lives of 
patients with SCI mainly include surgery, drug therapy, 
and rehabilitation (7-10). Unfortunately, an effective treat-
ment to completely repair SCI and improve functional re-
covery has not been found. Therefore, there is an urgent 
need to develop a safe and efficacious treatment that can 
repair SCI.
  In recent years, several clinical studies have shown that 
stem cell therapy can improve motor function and neuro-
logical status in patients with SCI (11). In particular, mes-
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Fig. 1. Pathophysiology of spinal cord
injury (SCI). BSCB: blood-spinal cord 
barrier.

enchymal stem cells (MSCs) are the most widely studied 
type of stem cells, which have a powerful ability in pro-
liferation, differentiation, and tissue regeneration and can be 
obtained from different adult tissues, such as bone mar-
row, adipose tissue, muscle, umbilical cord, and placenta (12, 
13). However, MSCs therapy also has some side effects in 
the clinic, including tumorigenicity, profibrogenic poten-
tial, and heterogenicity (3, 14). Fortunately, an increasing 
number of studies have shown that the therapeutic effects 
of MSCs are mainly related to exosomes secreted by MSCs, 
which have several advantages, including lower immuno-
genicity and an improved safety profile (15, 16). Exosomes 
contain nucleic acids, especially RNA, mainly including 
mRNA and microRNA (miRNA), the latter being consid-
ered bioactive compounds related to exosome function (17). 
Some studies have found that miRNAs associated with 
many secondary injuries are differentially expressed after 
SCI (18). Therefore, miRNAs may be potential targets for 
SCI therapy (19, 20).
  In this review, we briefly describe the pathological proc-
ess of SCI, provide information about exosomes, and sum-
marize the repair mechanism of mesenchymal stem cells- 
derived exosomes (MSCs-Exos) in the treatment of SCI. 
Moreover, we listed the miRNAs found in exosomes and 
their related mechanisms, analyzed the unique advantages 
of exosomes as cargo carriers, and finally indicated that 
MSCs-Exos might become a promising new direction for 
SCI therapy in the future.

Mechanism of SCI

  Although SCI is a complex process involving multiple 
factors, the related mechanism of SCI has gradually be-
come clear with further research (21). At present, the SCI 
pathological process includes two aspects: primary injury 

and secondary injury (22). Primary SCI is mainly due to 
mechanical trauma resulting in fracture and displaced 
bone fragments, disc material, and ligaments pressing di-
rectly on the spinal cord, which will lead to damaged blood 
vessels, disrupted axons, and broken neural-cell mem-
branes (22, 23). The characteristics of primary injury are 
local hemorrhage, edema, and ischemia (24). Secondary 
SCI produces multiple cascades of chemical events that 
cause further tissue loss and dysfunction. These events can 
be divided into three distinct but often continuous seque-
nces: acute (＜48 hours), subacute (48 hours∼14 days), 
and chronic (14 days∼6 months) (25). The acute phase 
is characterized by vascular injury, blood-spinal cord bar-
rier (BSCB) disruption, inflammation, ionic dysregulation, 
free radical production, and glutamate excitotoxicity. As 
the disease progresses, the SCI enters a subacute phase 
characterized by macrophage infiltration, astrocyte pro-
liferation, glial scar formation, and neuronal apoptosis. 
Finally, it enters a chronic phase characterized by Wallerian 
degeneration, glial scar maturation, myelomalacia, and 
cyst formation. All possible mechanisms are summarized 
in Fig. 1 (4, 22, 26-28).

Exosomes and MSCs-Exos

  Extracellular vesicles (EVs) are lipid-bound vesicles re-
leased by all cells, which are divided into three categories 
depending on their origin and biogenesis: apoptotic bodies, 
which are produced by the fragmentation of apoptotic 
cells; ectosomes, which are produced by direct outgrowths 
from the plasma membrane; and exosomes, which are pro-
duced by inward outgrowths from endosomal compart-
ments that subsequently fuse with the plasma membrane 
(29, 30). Among them, exosomes are vesicles with a diame-
ter of about 40∼160 nm, which contain various compo-
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Fig. 2. Exosome formation, secretion, and action on target cells. Formation of mesenchymal stem cells-derived exosomes (MSCs-Exos): ①
Endocytosis: The extracellular component and cell surface protein are engulfed into the cells through the invagination of the plasma mem-
brane to form an early endosome (EE); ② First exchange: The EE could initially exchange goods with the Golgi network and endoplasmic 
reticulum to form the late endosome (LE); ③ Secondary exchange: LE conducts cargo exchange again through the second plasma membrane 
invagination and finally forms intraluminal vesicles (ILVs), and the collection of multiple ILVs of different sizes is called a multivesicular 
body (MVB); ④ Plasma membrane budding: Some MVBs release exosomes extracellularly through plasma membrane budding; ⑤ Recycling: 
Some MVBs can be degraded by lysosomal fusion, and the degradation products can be recovered by cells. The structure of MSCs-Exos: 
Exosomes express tetraspanins (CD81, CD63, and CD9), heat shock proteins (HSP60, HSP70, and HSP90), ALG-2 interacting protein X 
(Alix), TSG101, integrins, flotillin, surface markers (CD44, CD73, and CD90) and adhesion molecules (CD29, CD44, and CD73). In addition, 
MSCs-Exos carry nucleic acids, proteins, and enzymes. Exosomes enter recipient cells in three ways: ⑥ receptor-mediated entry, ⑦ direct 
membrane fusion, and ⑧ endocytosis.

nents such as specific lipids, proteins, and nucleic acids 
(31). Because exosomes have the smallest average diameter, 
complex composition, and diverse functions, they are the 
most studied EV types at present (30). Recent research has 
found that exosomes are actively secreted by most cells 
and widely exist in all body fluids and tissues, playing an 
important role in intercellular communication (32-35). 
  Exosomes are generated in a process that involves dou-
ble invagination of the plasma membrane and the forma-
tion of intracellular multivesicular bodies (MVBs) contain-
ing intraluminal vesicles (ILVs), which can be summar-
ized as four steps: budding of the plasma membrane, ILV 
formation, MVB formation, and exosome secretion (Fig. 
2) (31, 36). The formation process and mechanism of exo-
somes are complex, and most of them act through the en-
dosomal sorting complex required for transport (ESCRT). 
The ESCRT system contains four protein complexes, ESCRT- 

0, ESCRT-1, ESCRT-2, and ESCRT-3, together with aux-
iliary proteins, such as VTA⁃1, ALIX, and VPS4 (36, 37). 
Notably, some studies have found that some exosomes can 
also be produced in the absence of ESCRT, and these 
mechanisms involve lipids, tetraspanins, or heat shock 
proteins. These approaches are collectively called ESCRT- 
independent mechanisms (38, 39). The process of exosome 
secretion into the extracellular matrix is mainly through 
MVB transport to the plasma membrane and fusion with 
the plasma membrane, depending on the synergy of sev-
eral Rab GTPases and SNAREs (soluble N-ethylmaleimide- 
sensitive fusion attachment protein receptors) complexes 
(31, 40, 41). Finally, the released exosomes can directly 
enter cells through three different mechanisms: receptor- 
mediated entry, direct membrane fusion, and endocytosis, 
as shown in Fig. 2 (40).
  MSCs-Exos is one of the most studied exosomes. MSCs- 
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Exos contain multiple proteins with multiple functions, 
including ESCRT complexes, ALG-2 interacting protein X 
(Alix), tumor susceptibility gene 101 (Tsg101), Rab GTPases, 
integrins, heat shock protein (HSP60, HSP70, and HSP90), 
and MHC class I and class II proteins (42, 43). In addi-
tion, MSCs also have characteristic tetraspanins (CD81, 
CD9, and CD63) and some surface markers (CD44, CD73, 
and CD90) (Fig. 2) (31, 44). MSCs-Exos participate in in-
tercellular communication, which can carry proteins, mRNA, 
and miRNA into other cells (45). They can participate in 
the metabolism, energy pathways, cell growth, communi-
cation, and transport of target cells and regulate a wide 
range of normal physiological and pathological processes 
(46, 47). In particular, nucleic acids are abundant in exo-
somes, including mRNAs, miRNAs, mitochondrial DNA 
and piRNAs, ncRNA, ribosomal RNA, and snRNA (48). 
Among these RNAs, miRNAs have been the most exten-
sively studied. They are endogenous small noncoding RNA 
molecules 18∼25 nucleotides in length that can control 
the expression of mRNAs, protein production, and cell func-
tion at the posttranscriptional level (49, 50). Primary miRNAs 
are transcribed, processed, and transported to the cyto-
plasm and then cleaved to generate double-stranded ma-
ture miRNAs, which often interact with target messenger 
RNAs, resulting in translational repression and degrada-
tion of these target mRNAs (49, 51). Biologically, miRNAs 
have been implicated in development, differentiation, pro-
liferation, apoptosis, and immune responses (52). Currently, 
increasing evidence shows that MSCs-Exos and their 
miRNAs have great potential in promoting functional re-
covery after SCI, which is another new hope after stem cell 
treatment of SCI.

Mechanism of MSCs-Exos treatment of SCI

  Compared with MSCs, MSCs-Exos have the advantages 
of low cytotoxicity, penetrating deep tissues, being able to 
escape the rapid clearance of the phagocytic system, and 
penetrating the blood-brain barrier, so there are an in-
creasing number of studies on exosomes for the treatment 
of SCI (53). At present, a large number of animal experi-
ments and cell experiments have proven that MSCs-Exos 
contribute to the repair of SCI (Table 1), but there are 
few related clinical studies. We summarize the mecha-
nisms related to the existing research on MSCs-Exos and 
their miRNAs in the treatment of SCI.

Regulation of the neuroinflammatory response
  Inhibiting inflammation by exosomes: The inflamma-
tory response induced by SCI is an important factor in 

secondary injury. Microglia, neutrophils, macrophages, and 
lymphocytes accumulate and release various cytokines in 
the microenvironment due to the disruption of capillaries, 
the BSCB, and chemokines, which unbalance the local mi-
croenvironment (54, 55). The microenvironment contains 
multiple proinflammatory factors (IL-1, IL-6, and TNF-
α) and anti-inflammatory factors (IL-4, IL-8, IL-10, and 
IL-13) that are related to the functional recovery of SCI 
patients (56). Therefore, modulating local microenviron-
mental inflammation may be a therapeutic approach for 
SCI (10, 56).
  Several studies have demonstrated that exosomes can mod-
ulate the levels of inflammatory factors (Fig. 3). Fan et al. 
(57) showed that bone marrow stem cell-derived exosomes 
(BMSC-Exos) can attenuate the inflammatory response and 
apoptosis of SCI by inhibiting the TLR4/MyD88/NF-κB 
signaling pathway. Zhang et al. (58) found that miR- 
181c-enriched BMSC-Exos could downregulate the levels 
of TNF-α and IL-1β to reduce spinal cord inflammation 
and apoptosis, and the study illustrated that the mecha-
nism may be the inhibition of Phosphatase and Tensin ho-
molog (PTEN) and NF-κB signaling. Nie and Jiang (59) 
also made a similar discovery that miR-23b delivered by 
BMSC-Exos could decrease the levels of proinflammatory 
cytokines (IL-6, IL-1β, and TNF-α) and increase the lev-
els of anti-inflammatory cytokines (IL-10). miR-23b also 
promotes the transformation of microglia to the M2 type. 
Further studies revealed that it attenuates the inflam-
matory cytokine response by inhibiting the TLR4/NF-κB 
pathway. Recently, Sung et al. (60) demonstrated that exo-
somes from human epidural adipose tissue-derived MSCs 
(AD-MSCs) attenuated local inflammatory responses by in-
hibiting the release of proinflammatory cytokines after SCI.
  In addition, neuroinflammation, which is characterized 
by the activation of central immune cells triggered by vari-
ous causes, also plays a key role in the secondary injury 
process of SCI, and the most important step is the activa-
tion of various inflammasome complexes (61, 62). Infla-
mmasome complexes consist of three components: a sen-
sor, adaptor protein apoptotic speck protein, and effector 
caspase-1 (63). Currently, the sensors that have been iden-
tified include NLR family pyrin domain containing 
(NLRP)1, NLRP3, and NOD like receptor family CARD 
domain containing 4, and absent in melanoma 2 (64, 65). 
Studies have found that the expression of the above four 
inflammasomes is upregulated after SCI injury (64, 65), 
and inhibition of inflammasome activation reduces neuro-
nal death and promotes motor recovery (66-68). Recently, 
several studies have shown that exosomes can inhibit the 
activation of inflammasomes to attenuate inflammatory 
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Table 1. Current preclinical studies on MSCs-Exos in the treatment of spinal cord injury

References
Types of 
exosomes

Research 
objects

Type of 
miRNA

Mechanism Effect

(57) BMSC-Exos Rat and 
PC12 cell

- Inhibit the TLR4/MyD88
/NF-κB pathway

Inhibit the inflammatory 
response and apoptosis

(58) BMSC-Exos Rat miR-181c Inhibit the PTEN and NF-κB 
signaling pathway

Reduce spinal cord inflammation 
and apoptosis

(59) BMSC-Exos Rat and 
BV2 cells

miR-23b Inhibit TLR4/NF-κB pathway Attenuate the inflammatory 
cytokine response

(60) AD-MSCs-Exos Rat - - Inhibit the release of 
proinflammatory cytokines

(70) EF-MSCs-Exos Rat - Inhibit NLRP3 inflammasome 
activation, decrease the level 
of pro-apoptotic protein Bax

Reduce the expression of 
inflammatory cytokines and 
reduce apoptosis

(71) HWJ-MSCs-Exos Rat - Decrease the expression 
of caspase 1

Attenuate neuroinflammation

(80) BMSC-Exos Rat miR-125a Negatively regulate IRF5 
expression

Promote M2 macrophage 
polarization and reduce the 
inflammatory response

(81) BMSC-Exos Rat miR-124-3p Negatively regulate Ern1 
expression

Promote M2 macrophage 
polarization

(82) MSCs-Exos Mice miR-216a-5p Inhibit TLR4/NF-κB and activate 
the PI3K/Akt signaling pathway

Promote M2 macrophage 
polarization

(88) BMSC-Exos Rat - Inhibit nuclear translocation 
of NF-κB p65

Reduce A1 astrocytes

(89) BMSC-Exos Rat - - Suppress activation of A1 
neurotoxic reactive

(90) HUC-MSCs-Exos Rat miR-146a-5p Inhibit the Traf6/Irak1/
NFκB pathway

 Reduces the toxic effects of 
neurotoxic astrocytes

(96) HP-MSCs-Exos Mice - - Promote the new vessel formation
(97) MSCs-Exos Endothelial 

cells
- Rromote VEGF expression 

through activation of PKA 
signaling pathway

Enhance angiogenesis

(98) MSCs-Exos Rat - - Promote the new vessel formation
(114) BMSC-Exos Rat - Activate the Wnt/β-catenin 

signaling pathway
Inhibit neuronal apoptosis

(115) HUC-MSCs-Exos Rat - Regulate BCL2/Bax 
and Wnt/β-catenin 
signaling pathways

Anti-apoptosis and 
anti-inflammatory

(116) BMSC-Exos Rat - Regulate the expression of 
pro-apoptoticprotein cleaved 
caspase-3，anti-apoptotic protein 
Bcl-2, and autophagy-related 
proteins LC3IIB and Beclin-1

Promote autophagy to reduce 
neuronal apoptosis

(117) MSCs-Exos Rat and 
SH-SY5Y 
cells

miR-21 and 
miR-19b

Regulate PTEN expression Regulate the apoptosis and 
differentiation of neuron cells

(118) MSCs-Exos Rat miR-21 Regulate PDCD4 and PTEN 
expression

Inhibit the apoptosis of neurons

(119) MSCs-Exos Rat miR-21-5p Downregulate the expression 
of the pro-apoptotic 
target gene FasL

Inhibit the apoptosis of neurons

responses (69). Huang et al. (70) suggested epidural fat 
mesenchymal stem cells-derived exosomes (EF-MSCs-Exos) 
via tail vein injection to improve neurological functional 

recovery, and the possible mechanism is to inhibit NLRP3 
inflammasome activation and reduce the expression of in-
flammatory cytokines. In addition, Noori et al. (71) indi-



Haoyu Wang, et al: The Role of Exosomes from MSCs in SCI  241

Table 1. Continued

References
Types of 
exosomes

Research 
objects

Type of 
miRNA

Mechanism Effect

(120) MSCs-Exos Rat miR-29b-3p Activate the Akt/mTOR pathway 
through the PTEN axis

Inhibit the apoptosis of neurons

(121) MSC-Exos Rat miR-381 Downregulate the BRD4/
WnT5A axis

Reverse neuronal apoptosis

(122) AD-MSCs -Exos Rat miR-499-5p Inhibit JNK3/MAPK10 and 
negatively regulate the 
JNK3/c-jun signaling pathway

Regulate neuronal apoptosis

(123) BMSC-Exos Rat and 
PC12 cell

miR-9-5p Regulate the HDAC5/FGF2 axis Alleviate apoptosis and 
inflammation

(124) AD-MSCs-Exos Rat and 
PC12 cell

miR-511-3p Regulate TRAF6/S1P axis Inhibit neuronal apoptosis and 
inflammatory

(129) BMSC-Exos Rat - Activate the NF-κB signaling 
pathway

Maintain BSCB integrity

(130) BMSC-Exos Rat - Suppress pericyte pyroptosis Maintain BSCB integrity
(131) MSCs-Exos Rat - Increase the expression of cell 

junction proteins via the 
TIMP2/MMP pathway

Attenuate the destruction of the 
BSCB

(132) MSCs-Exos Rat - Upregulate TGFβ, TGFβ 

receptors, and tight junction 
proteins

Reduce BSCB permeability

(134,
135)

MSCs-Exos Cortical 
neurons

- - Promote the growth of axons in 
neurons

(136) HP-MSCs-Exos Rat - Activate of the MEK/ERK/CREB 
signaling pathway

Neural progenitor cells activation 
and neurogenesis

(137) MSCs-Exos Rat - Inhibit the NF-κb/NLRP3 
signaling pathway

Promote axon regeneration and 
myelin regeneration

(138) HUC-MSCs-Exos Rat and 
PC12 cell

miR-199a-3p
/145-5p

Regulate NGF/TrkA signaling 
pathway

Promote axonal growth

(139) MSCs-Exos Rat - Upregulate R-Smad 6 expression 
by carrying TGFβ

Promote neuronal regeneration

(140) MSCs-Exos Rat miR-let-
7a-5p

Regulate the HMGA2/
SMAD2 axis

Promote neuronal regeneration

MSCs-Exos: mesenchymal stem cells-derived exosomes, miRNA: microRNA, BMSC: bone marrow stem cell, PTEN: Phosphatase and Tensin 
homolog, AD: adipose tissue, EF: epidural fat, HWJ: human Wharton’s jelly, HUC: human umbilical cord, HP: human placenta, VEGF: 
vascular endothelial growth factor, BSCB: blood-spinal cord barrier.

cated that human Wharton’s jelly mesenchymal stem cells- 
derived exosomes (HWJ-MSCs-Exos) attenuated neuro-
inflammation after SCI by decreasing the expression of 
caspase 1, a component of the inflammasome complex, and 
the inflammatory cytokines IL-1β, IL-18, and TNF-α. 
Thus, MSCs-Exos and their miRNA can modulate the lev-
els of inflammatory factors to improve the outcome of SCI.
  Promotion of macrophage polarization by exosomes: 
Microglia are resident immune cells of the central nervous 
system (CNS) and are mainly derived from microglial pro-
genitor cells derived from the embryonic yolk sac (72, 73). 
Macrophages are derived from blood mononuclear cells, 
which are derived from myeloid progeny in the bone mar-
row (74). After SCI, the destruction of the cerebrospinal 

barrier allows monocytes to infiltrate the spinal cord tis-
sue and transform into macrophages, which together with 
resident microglia activate and participate in inflam-
matory responses (75). Notably, macrophages and micro-
glia were morphologically and immunohistologically in-
distinguishable after activation (76). Thus, activated mi-
croglia and blood-derived monocytes are collectively re-
ferred to as CNS macrophages (77). Macrophages have two 
main polarization phenotypes: M1 and M2 (74, 78). M1 
macrophages (proinflammatory cells) produce various pro-
inflammatory factors (IL-6, IFN-γ, IL-12, IL-23, IL-1β, 
and TNF-α), reactive oxygen species (ROS), and nitric 
oxide to promote inflammation and neuronal damage. In 
contrast, M2 macrophages (anti-inflammatory cells) have 
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Fig. 3. The mechanism by which mesenchymal stem cells-derived exosomes (MSCs-Exos) regulate the immune response. Bone marrow 
stem cell (BMSC)-Exos can regulate the TLR4/MyD88/NF-κB signaling pathway to produce the production of anti-inflammatory factors. 
MSCs-Exos with miR-181c and miR-23b can inhibit the formation of microglia via the Phosphatase and Tensin homolog (PTEN) signaling 
pathway and inhibit the TLR4/NF-κB pathway to inhibit the production of proinflammatory factors. Epidural fat (EF)-MSCs-Exos and human 
Wharton’s jelly (HWJ)-MSCs-Exos can inhibit the NLRP3 activation to inhibit the production of proinflammatory factors. MSCs-Exos with 
miR-125a and miR-124-3p can inhibit M2 macrophage polarization by regulating the IRF5 and Ern1 signaling pathways. MSCs-Exos with 
miR-216a-5p can inhibit M2 macrophage polarization by inhibiting TLR4/NF-κB and activating the PI3K/Akt signaling pathway. MSCs-Exos 
can inhibit the NFκB p65 signaling pathway to reduce astrocyte toxicity. MSCs-Exos with miR-146a-5p can inhibit the Traf6/Irak1/NF-κB 
signaling pathway to reduce astrocyte toxicity.

anti-inflammatory and tissue repair properties because 
they express high levels of the anti-inflammatory factors IL- 
10 or transforming growth factor (TGF)β, and some stud-
ies have confirmed that the predominance of M1 macro-
phages compared with M2 macrophages can aggravate in-
jury after SCI (54, 76, 79). Therefore, the regulation of mac-
rophage polarization may be a treatment method for SCI.
  Some studies have reported that MSCs-Exos can pro-
mote macrophage polarization (Fig. 3). Chang et al. (80) 
found that miR-125a from BMSC-Exos could promote M2 
macrophage polarization by negatively regulating interfer-
on regulatory factor 5 (IRF5) expression and ultimately re-
duce the inflammatory response caused by SCI and pro-
mote the recovery of motor function. Li et al. (81) showed 
that exosomal miR-124-3p from BMSC attenuated nerve 
injury induced by SCI, which may inhibit endoplasmic reti-
culum to nucleus signaling 1 (Ern1) and promote M2 pola-
rization. Liu et al. (82) suggested that exosomal miR-216a- 
5p from hypoxia-treated MSCs inhibited TLR4/NF-κB 
signaling pathway and activated the PI3K/Akt signaling 
pathway to convert microglia from the M1 proinflam-
matory phenotype to the M2 anti-inflammatory phenotype 
and increase the treatment potential of SCI. In addition, 
Liu et al. (83) revealed that dental pulp stem cell-derived 
exosomes could suppress M1 macrophage polarization by 
inhibiting the ROS-MAPK-NF-κB P65 signaling pathway 

after SCI. Thus, MSCs-Exos and their miRNA can promote 
macrophage polarization to improve the outcome of SCI.
  Regulation of astrocytes by exosomes: Astrocytes are 
involved in CNS repair and play a very important role in 
the process of SCI (84-87). There are two types of reactive 
astrocytes, A1 and A2 astrocytes, which are induced by 
neuroinflammation (induced by IL-1α, TNF-α, and C1q) 
and ischemia. A1 astrocytes have neurotoxic effects on 
myelin sheaths, synapses, and neurons; in contrast, A2 as-
trocytes exert neuroprotective effects by upregulating the 
expression of certain neurotrophic factors (86, 87). There-
fore, reducing the proportion of A1 neurotoxic astrocytes 
may be a potential treatment strategy for SCI.
  There are few reports that MSCs-Exos reduce A1 neuro-
toxic astrocytes (Fig. 3). Wang et al. (88) found that intra-
venous administration of MSCs-Exos exerts anti-inflam-
matory and neuroprotective effects in a rat model of SCI, 
possibly by inhibiting nuclear translocation of NF-κB 
p65 to reduce SCI-induced A1 astrocytes. Liu et al. (89) 
identified that BMSC-Exos can inhibit the activation of 
A1 neurotoxicity-responsive astrocytes and promote func-
tional behavioral recovery after acute SCI. Lai et al. (90) 
showed that exosomal miR-146a-5p from human umbilical 
cord mesenchymal stem cells (HUC-MSCs) significantly 
reduces the toxic effects of neurotoxic astrocytes and pro-
motes the recovery of neurological function in injured 
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Fig. 4. The mechanism by which mesenchymal stem cells-derived exosomes (MSCs-Exos) promotes angiogenesis and regulates blood-spinal 
cord barrier (BSCB) integrity. MSCs-Exos can promote angiogenesis by promoting the expression of vascular endothelial growth factor (VEGF) 
via the PKA signaling pathway. BMSC-Exos can suppress pericyte pyroptosis and inhibit pericyte migration by activating the NF-κB signaling 
pathway to maintain BSCB integrity. MSCs-Exos could increase the expression of cell junction proteins via the TIMP2/MMP pathway to 
attenuate the destruction of the BSCB. MSCs-Exos could reduce BSCB permeability by targeting M2 macrophages to upregulate TGFβ
and TGFβ receptor expression.

rats, and its possible mechanism is to inhibit the activa-
tion of the NF-κB pathway by suppressing the expression 
of TNF receptor associated factor 6 (TRAF6) and inter-
leukin 1 receptor associated kinase 1 (IRAK1). Thus, MSCs- 
Exos and their miRNA can reduce A1 neurotoxic as-
trocytes to improve the outcome of SCI.

Promotion of angiogenesis by exosomes
  Blood vessels can transport multiple ingredients (oxygen 
and nutrients), remove metabolic waste, and facilitate cell 
circulation (91, 92). After SCI, vascular injury leads to is-
chemia, hemorrhage, and immune cell infiltration, accel-
erating the onset of secondary injury and neurological def-
icits (93, 94). Studies have proven that angiogenesis is one 
of the most important conditions for ensuring tissue sur-
vival and functional regeneration (95). Therefore, promot-
ing angiogenesis is another research direction for SCI.
  Several studies have shown that exosomes can promote 
angiogenesis after SCI (Fig. 4). Zhang et al. (96) found 
that human placenta mesenchymal stem cells-derived exo-
somes (HP-MSCs-Exos) could promote tube formation by 
endothelial cells in vitro and new vessel formation in vivo 
and improve neurologic function in mice post-SCI. Xue 
et al. (97) revealed that MSCs-Exos induced by hypoxia 
have been found to accelerate angiogenesis by promoting 
vascular endothelial growth factor (VEGF) expression 
through activation of the PKA signaling pathway. Recent 
research also revealed that hypoxia-stimulated exosomes 
derived from MSCs could be transplanted into the injured 
spinal cord through an adhesive hydrogel, which could 
promote angiogenesis and functional recovery after injury 
in vitro and in vivo (98). Furthermore, besides exosomes 
from MSCs, exosomes derived from neural stem cells (99), 
M2 macrophages (100), microglia (101), and Schwann cells 

(102) have also been found to promote angiogenesis to fa-
cilitate functional recovery after SCI. However, the mecha-
nism by which exosomes promote angiogenesis still needs 
further research. Thus, MSCs-Exos can promote angio-
genesis to improve the outcome of SCI.

Activation of autophagy and inhibition of apoptosis by 
exosomes
  Autophagy is an important defense and protection mech-
anism for an organism. Autophagy mainly participates in 
cell recycling by degrading damaged and denatured pro-
teins, organelles, and other substances, thus enabling neu-
rons to survive in an environment deficient in nutritional 
factors (103-105). Proper activation of autophagy is benefi-
cial to eliminate toxic proteins and damaged mitochondria 
for promoting neuroprotection in traumatic SCI (106). 
Previous studies have found that the levels of autophagy 
biomarkers (Beclin-1, LC3B II, and P63) are elevated dur-
ing the acute phase of secondary injury in SCI, indicating 
that autophagy was significantly activated (107, 108). In 
addition, apoptosis, also known as programmed cell death, 
plays a crucial role in SCI-induced cell death (109, 110). 
Inhibition of apoptosis signaling pathways could impede 
neuronal cell death (111). Some studies have shown that 
activation of autophagy and inhibition of neuronal apopto-
sis can promote the recovery of neural function after SCI 
(112, 113). Therefore, modulation of autophagy and apop-
tosis is a promising therapeutic strategy for SCI.
  Recent studies have demonstrated that autophagy and 
apoptosis are closely related to exosomes (Fig. 5). BMSC- 
Exos can inhibit neuronal apoptosis by activating the 
Wnt/β-catenin signaling pathway (114). EF-MSCs-Exos 
could decrease the expression level of the proapoptotic 
protein Bax and upregulate antiapoptotic proteins to re-
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Fig. 5. The mechanism by which mesenchymal stem cells-derived exosomes (MSCs-Exos) regulates apoptosis and autophagy. Bone marrow 
stem cell (BMSC)-Exos can inhibit apoptosis by regulating the Wnt/β-catenin signaling pathway. human umbilical cord (HUC)-MSCs-Exos 
can regulate the Wnt/β-catenin signaling pathway and the Bcl-2/Bax axis to inhibit apoptosis. MSCs-Exos with miR-19b and miR-181c 
can inhibit apoptosis via the Phosphatase and Tensin homolog (PTEN) signaling pathways. MSCs-Exos with miR-21 can inhibit apoptosis 
via the PTEN and PDCD4 signaling pathways. MSCs-Exos with miR-21-5p and miR-29b-3p can inhibit apoptosis by regulating the FasL 
signaling pathway and activating the Akt/mTOR signaling pathway. MSCs-Exos with miR-381 can inhibit apoptosis via BRD4/WNT5A signal-
ing pathways. MSCs-Exos with miR-499-5p inhibits the JNK3/MAPK10 and JNK3/c-jun signaling pathways to inhibit apoptosis. MSCs-Exos 
with miR-9-5p and miR-511-3P could regulate the HDAC5/FGF2 and TRAF6/S1P signaling pathways to inhibit apoptosis. MSCs-Exos could 
regulate the autophagy-related proteins LC3IIB and Beclin-1 to promote autophagy.

duce apoptosis after SCI (70). HUC-MSCs-Exos improved 
rat motor function after SCI through anti-apoptosis and 
anti-inflammatory effects, possibly by regulating the B-cell 
lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) axis 
and Wnt/β-catenin signaling pathways (115). Another 
study found that BMSC-Exos not only enhanced the ex-
pression of the autophagy-related proteins LC3IIB and 
Beclin-1 and induced autophagosomes to form but also re-
duced the expression level of the proapoptotic protein cleaved 
caspase-3 and upregulated the expression level of the anti-
apoptotic protein Bcl-2. These effects ultimately attenuate 
neuronal apoptosis by promoting autophagy and func-
tional behavior recovery in SCI rats (116).
  In addition, some miRNAs from exosomes have similar 
findings. Xu et al. (117) found that miR-21 and miR-19b 
derived from MSCs-Exos could reduce the expression of 
PTEN in a rat model of SCI, and further studies con-
firmed that they could regulate the apoptosis and differ-
entiation of neuronal cells by regulating PTEN expression. 
Kang et al. (118) similarly found that miR-21 derived 
from MSCs-Exos inhibited the apoptosis of neurons in 
SCI rats by regulating programmed cell death 4 protein 
(PDCD4) and PTEN expression. Zhou et al. (119) sug-
gested that miR-21-5p was one of the most highly expre-
ssed miRNAs in MSCs-Exos, which could downregulate 
the expression of the proapoptotic target gene FasL and 

attenuate apoptosis in the injured spinal cord. Xiao et al. 
(120) reported that the expression of miR-29b-3p was up-
regulated in the spinal cord tissue of SCI rats treated with 
MSCs-Exos. Treatment of SCI rats with MSCs-Exos trans-
fected with miR-29b-3p inhibitor significantly increased 
apoptosis in the spinal cord tissue. Further research found 
that its possible mechanism is to activate the Akt/mTOR 
pathway through the miR-29b-3p/PTEN axis to promote 
neurological function recovery in rats. Jia et al. (121) 
showed that miR-381 derived from MSCs-Exos reverses 
neuronal apoptosis by downregulating the BRD4/WnT5A 
axis and can promote recovery from SCI in a rat model. 
A recent study found that miR-499-5p derived from hypo-
xia-induced adipose mesenchymal stem cells-derived exo-
somes (AD-MSCs-Exos) may promote SCI repair by inhi-
biting JNK3/MAPK10 and negatively regulating the JNK3/ 
c-jun signaling pathway to regulate neuronal apoptosis 
(122). Furthermore, He et al. (123) explored exosomal 
miR-9-5p on SCI progression in an in vitro or in vivo mod-
el and discovered that exosomal miR-9-5p derived from 
BMSC inhibited the expression of histone deacetylase 5 
(HDAC5), deacetylated the FGF2 gene and decreased its 
expression, thereby inhibiting FGF2-mediated apoptosis, 
inflammation, and endoplasmic reticulum stress to alle-
viate SCI in rats. Similarly, Huang et al. (124) revealed 
through in vitro and in vivo experiments that miR-511-3p 



Haoyu Wang, et al: The Role of Exosomes from MSCs in SCI  245

Fig. 6. The mechanism by which mesenchymal stem cells-derived exosomes (MSCs-Exos) promotes axonal growth and neuronal regeneration. 
MSCs-Exos can promote axonal growth by promoting M2 macrophage polarization by inhibiting the NF-κb/NLRP3 signaling pathway. 
MSCs-Exos with miR-199a-3p/145-5p can target Cblb/Cbl mRNAs to inhibit the NGF/TrkA pathway to promote axonal growth. Human 
placenta (HP)-MSCs-Exos can promote neuronal regeneration by activating the MEK/ERK/CREB signaling pathway. MSCs-Exos could attenuate 
R-Smad 6 expression to promote neuronal regeneration by carrying TGFβ. MSCs-Exos with miR-let-7a-5p downregulated SMAD2 expression 
by inhibiting HMGA2 to promote neuronal regeneration.

from hypoxia-induced AD-MSCs-Exos can inhibit neuro-
nal apoptosis and inflammatory reactions by regulating 
the TRAF6/S1P axis and weakening SCI progression. 
Thus, MSCs-Exos and their miRNA can regulate autoph-
agy and apoptosis to improve the outcome of SCI.

Regulation of BSCB permeability by exosomes
  The BSCB is the most important interface for the ex-
change of molecules between the blood and spinal cord 
parenchyma; it is mainly responsible for maintaining the 
normal function of the nervous system and is regulated 
by neurovascular unit cells (125). The BSCB is composed 
of the basement membrane, pericytes, capillary endothe-
lial cells, and astrocyte foot processes (126). In particular, 
pericytes, as a part of the neurovascular unit, are very im-
portant for maintaining the integrity and function of blood 
vessels and the BSCB (127). Current studies have shown 
that pericytes can maintain the stability of microvessels, 
possibly through the following three mechanisms: promot-
ing the expression of endothelial tight junction proteins, 
regulating vesicle transport and body flow across cells, and 
moderating the tightness connection arrangement (128). 
Following SCI, the structural disruption and increased 
permeability of the BSCB can lead to secondary injuries 
such as spinal cord edema, hemorrhage, oxidative stress, 
and excessive inflammation (127). Therefore, maintaining 
the integrity of the BSCB after SCI may be a potential 
therapeutic approach.
  Some studies have identified that exosomes can improve 
BSCB integrity (Fig. 4). Lu et al. (129) provided the first 
evidence that BMSC-Exos could inhibit pericyte migration 
via suppression of the activation of the NF-κB signaling 
pathway, thereby maintaining the integrity of the BSCB 
and promoting functional recovery after SCI. Zhou et al. 
(130) showed that BMSC-Exos effectively suppresses peri-

cyte pyroptosis and maintain BSCB integrity. Recently, an-
other study found that MSCs-Exos increases the expression 
of cell junction proteins via the TIMP2/MMP pathway, 
which ultimately attenuates the destruction of the BSCB 
and improves functional recovery after SCI (131). In addi-
tion, Nakazaki et al. (132) suggested that MSCs-Exos were 
able to target M2 macrophages to upregulate TGFβ, TGF
β receptors, and tight junction proteins, thereby reducing 
BSCB permeability. Thus, MSCs-Exos can improve BSCB 
integrity to improve the outcome of SCI.

Promotion of neuronal regeneration and axonal growth 
by exosomes
  Axonal damage and neuronal apoptosis usually occur 
during the secondary injury period of SCI (10). Due to 
the weak ability of neurons and axons to regenerate, they 
are almost unable to regenerate after injury, which ulti-
mately leads to a large degree of limited functional recov-
ery of the spinal cord (133). Therefore, promoting axonal 
growth and neuronal regeneration is one of the directions 
of SCI treatment.
  Some studies have verified that exosomes can promote 
axonal growth and neuronal regeneration (Fig. 6). Early re-
searchers found that MSCs-Exos could promote the growth 
of axons in neurons, but the mechanism was unclear (134, 
135). Recently. Zhou et al. (136) reported that HP-MSCs- 
Exos can promote motor function recovery after SCI through 
endogenous neural progenitor cell activation and neuro-
genesis, a process that may involve activation of the MEK/ 
ERK/CREB signaling pathway. Li et al. (137) provided 
that Exosomes derived from lipopolysaccharide-precondi-
tioned MSCs can promote M2 macrophage polarization by 
inhibiting the NF-κb/NLRP3 signaling pathway, which 
ultimately promotes axon regeneration and myelin regene-
ration. Wang et al. (138) found that miR-199a-3p/145-5p 
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derived from HUC-MSCs-Exos target Cblb and Cbl mRNAs, 
inhibit the ubiquitination-mediated degradation of TrkA, 
and ultimately mediate the NGF/TrkA signaling pathway to 
promote neurite outgrowth and functional recovery in rats. 
Han et al. (139) revealed that MSCs-Exos upregulate recep-
tor-regulated Smad 6 expression and promote neuronal re-
generation in SCI rats by carrying TGFβ. Wang et al. (140) 
showed that MSCs-Exos containing miR-let-7a-5p can down-
regulate SMAD2 expression by inhibiting high-mobility 
Group A2 (HMGA2) and ultimately promote neuronal re-
generation and improve neurological recovery through the 
HMGA2/SMAD2 axis in SCI rats. Thus, MSCs-Exos and their 
miRNA can promote axonal growth and neuronal regene-
ration to improve the outcome of SCI.

Exosomes as delivery vehicles for the transport of 
cargo
  Recent studies have shown that exosomes not only have 
innate therapeutic potential but also serve as drug-delivery 
vehicles (141). The commonly used drug delivery carriers 
are multifunctional nanomaterials, including polymer nano-
particles, micelles, liposomes, mesoporous silica nano-
particles, microneedles, and polymer vesicles. Not only are 
nanomaterials potentially systemically toxic and immuno-
genic, but there are still barriers to accurate delivery to 
in vivo target sites (142). Compared with other carriers, 
exosomes have the following advantages: low cytotoxicity, 
deep tissue penetration, rapid clearance from the phag-
ocytic system, and penetration of the blood-brain barrier 
(53). Various methods (electroporation, sonication, coincu-
bation with modified cargo) have been developed to load 
proteins, siRNA, miRNA, and small molecule compounds 
into exosomes, which are subsequently delivered to the an-
imal via intravenous, intraperitoneal, subcutaneous, and 
topical injections to produce therapeutic effects (143). 
Studies have found that exosomes carrying miRNAs can 
repair SCI; thus, exosomes can be used as cargo trans-
porters, which is another new method of SCI treatment.
  At present, some experiments have proven that exo-
somes carrying miRNA have great potential in the treat-
ment of SCI. Li et al. (144) discovered that miR-544-modi-
fied MSCs-Exos improve functional recovery and neuronal 
survival by reducing the levels of proinflammatory cyto-
kines after SCI. Li et al. (145) identified that loaded with 
miR-133b, MSCs-Exos preserved neuronal cells and en-
hanced the regeneration of axons, which was attributed to 
the activation of ERK1/2, STAT3, and CREB, as well as 
to the inhibition of RhoA expression. MSCs-Exos contain-
ing miR-126 not only inhibits the expression of SCI-re-
lated EVH1 domain protein 1 and phosphoinositide 3 kin-

ase regulatory subunit 2 to promote angiogenesis after SCI 
but also has apoptotic effects (146). Ren et al. (147) dis-
covered that miR-133b-modified AD-MSCs-Exos can af-
fect the signaling pathway related to axon regeneration, 
NF, GAP43, GFAP, and MBP and promote the recovery 
of neurological function in SCI animals. Similarly, 
miRNA-29b loaded in BMSC-Exos repaired SCI in rats by 
regulating proteins involved in neuronal regeneration, 
such as NF200, GAP-43, and GFAP (148). Overexpression 
of miR-338-5p in BMSC-Exos provided neuroprotection 
and inhibited apoptosis after SCI in vivo and in vitro. 
Further studies indicated that the possible mechanism is 
the activation of the PI3K/Akt pathway through cAMP- 
mediated Rap1 activation (149). Chen et al. (150) and Liu 
et al. (151) found that loaded with miR-455-5p, BMSC- 
Exos could alleviate SCI, increase autophagy to inhibit 
neuronal apoptosis and promote recovery of locomotor 
function after SCI by downregulating Nogo-A. Chen et al. 
(152) verified that loaded with miR-26a, BMSC-Exos 
could activate the PTEN-AKT-mTOR pathway to promote 
axonal regeneration and neurogenesis and attenuate glial 
scarring in SCI. Sheng et al. (153) reported that MSCs- 
Exos loaded with miRNA-22 can inhibit the pyroptosis of 
microglia and the neuroinflammatory response after SCI 
and ultimately improve the neurological function of rats. 
Huang et al. (154) showed that MSCs-Exos loaded with 
miR-494 can suppress inflammatory responses and resist 
apoptosis by promoting the polarity of macrophages and 
increasing the levels of the anti-apoptotic protein Bcl-2. 
Last, Jiang and Zhang (155) suggested that MSCs-Exos 
loaded with miR-145-5p reduces inflammation in SCI by 
regulating the TLR4/NF-κB signaling pathway. The 
above large number of animal experiments has confirmed 
the great potential of exosome-carrying miRNAs in the 
treatment of SCI. Thus, MSCs-Exos can carry external 
miRNA to improve the outcome of SCI.

Discussion

  Acute SCI is a severe CNS injury that has high morbidity 
and mortality. Due to the complex structure of the CNS 
and the poor regeneration ability of neurons, the treatment 
of SCI is still a worldwide problem. Previous studies have 
shown that MSCs may be a new research direction for the 
treatment of SCI, and a large number of animal studies 
have shown that stem cells can promote SCI repair through 
tissue repair and replacement, angiogenesis, and neuro-
trophic, anti-apoptotic, and anti-inflammatory mechanisms, 
but MSCs treatment also has many safety problems, such 
as thrombosis and embolism, infection, immune rejection, 
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and tumorigenicity (11). As research progressed, it was 
found that the efficacy of MSCs appeared to be related to 
the exosomes they secreted. Exosomes have the advantages 
of small size, good biocompatibility, low toxicity, and low 
immunogenicity, which suggests that exosome therapy is su-
perior to stem cell therapy (156). More importantly, exo-
somes can transport genetic material, protect it from extra-
cellular degradation, penetrate the blood-brain barrier, and 
act on receptor cells with high selectivity, making them an 
ideal delivery system for regenerative medicine (157). In re-
cent years, MSCs-Exos have achieved satisfactory results in 
clinical studies in the treatment of ischemic stroke, macular 
degeneration, diabetes, and kidney disease (43). Although 
there are currently no clinical studies on exosomes and SCI, 
a large number of animal studies in this review demon-
strate that exosomes have neuroprotective properties as a 
treatment for SCI, paving the way for future clinical studies 
on exosomes. In addition, after SCI, miRNAs related to oxi-
dative stress, inflammation, apoptosis, and other secondary 
injuries are significantly differentially expressed, resulting 
in differential expression of target genes and changes in cell 
function, which makes us pay more attention to the role 
of miRNAs in SCI. The possible therapeutic mechanisms 
and effects of some miRNAs in SCI have been discovered 
thus far, but the direct mechanisms of more miRNAs are 
still unclear, so further exploration is needed, and miRNAs 
are expected to become a key component of SCI repair. 
Moreover, MSCs-Exos are promising cell-free drug delivery 
systems for delivering therapeutic agents, such as miRNAs, 
to target tissues in animal models, enabling individualized 
therapy through proteins in miRNA-regulated pathways.
  Despite the progress of exosomes in the treatment of 
SCI, there are still many challenges to be faced. On the 
one hand, the separation, purification, and amplification 
of exosomes need to be solved comprehensively. There is 
an urgent need for rapid, inexpensive, simple, and stand-
ardized isolation and purification procedures to produce 
high-purity, high-yield exosomes with intact biological acti-
vity. On the other hand, current SCI models are mainly 
rats or mice. Due to species and anatomical differences, 
the human nervous system is more complex than rodents, 
and recovery after SCI is more difficult. Therefore, it is 
important to clarify the experimental efficacy of exosomes 
in primates, which have a more complex and advanced 
nervous system, to provide a further theoretical basis for 
the next clinical study. In addition, exosomes are generally 
not targeted, and it remains challenging to efficiently trans-
locate them to the site of the lesion and to function in 
vivo for a long period. Recent studies have identified tis-
sue-engineered scaffolds and bioengineering approaches to 

assist exosome delivery, which not only improve exosome 
targeting but also facilitate long-term sustainment and 
slow release of exosomes in vivo (158). Therefore, further 
search for efficient tissue engineering and bioengineering 
techniques can help exosomes to function better.

Summary

  In conclusion, MSCs-Exos and their miRNAs, as new 
therapeutic methods for SCI, showed special advantages. 
Current animal research has clarified that MSCs-Exos and 
their miRNAs in the treatment of SCI, including regulat-
ing immune responses, promoting angiogenesis, activating 
autophagy and inhibiting apoptosis, regulating the perme-
ability of BSCB, promoting neuronal regeneration and axo-
nal growth, and acting as delivery carriers. However, there 
are still many challenges, including exploring more effi-
cient methods for isolation, purification, and amplification 
of exosomes, clarifying the role of exosomes in different 
animal models of SCI, and finding efficient tissue engi-
neering and bioengineering techniques to improve the effi-
cacy of exosomes. Ultimately, we believe that MSCs-Exos 
offers new possibilities for the treatment of SCI, and we 
expect that relevant clinical trials will be able to be con-
ducted in the future, ultimately benefiting all of humanity.
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