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ABSTRACT

NK cells belong to innate lymphoid cells and able to eliminate infected cells and tumor cells. 
NK cells play a valuable role in controlling viral infections. Also, they have the potential to 
shape the adaptive immunity via a unique crosstalk with the different immune cells. Murine 
models are important tools for delineating the immunological phenomena in viral infection. 
To decipher the immunological virus-host interactions, two major infection models are 
being investigated in mice regarding NK cell-mediated recognition: murine cytomegalovirus 
(MCMV) and lymphocytic choriomeningitis virus (LCMV). In this review, we recapitulate 
recent findings regarding the multifaceted role of NK cells in controlling LCMV and MCMV 
infections and outline the exquisite interplay between NK cells and other immune cells in 
these two settings. Considering that, infections with MCMV and LCMV recapitulates many 
physiopathological characteristics of human cytomegalovirus infection and chronic virus 
infections respectively, this study will extend our understanding of NK cells biology in 
interactions between the virus and its natural host.
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INTRODUCTION

NK cells are innate cytotoxic lymphocytes and play an integral role in combating various 
pathogens. NK cells act by releasing cytokines and performing cytolytic activity toward tumor 
cells and virally infected cells (1). Even though NK cells are key players of innate immunity for 
ages, they have some emerged substantial adaptive roles as well (2). Unlike T and B lymphocytes 
which have rearranged Ag receptors, NK cells recognize their surroundings through receptors 
for pro-inflammatory cytokines, and via germline-encoded inhibitory and activating receptors 
(1,3). NK cells contribute to defense against wide spectrum of viral infections, such as; 
arenaviruses (e.g., lymphocytic choriomeningitis virus [LCMV]), and herpesviruses (e.g., 
murine cytomegalovirus [MCMV]), primarily by cytotoxicity, and modestly by IFN-γ (4).

Certain viruses establish chronic infection in the host such as HIV, hepatitis virus (e.g., 
hepatitis C and B) and cytomegalovirus (CMV). To induce persistent infection, viruses 

Immune Netw. 2024 Aug;24(4):e29
https://doi.org/10.4110/in.2024.24.e29
pISSN 1598-2629·eISSN 2092-6685

Review Article The Multifaceted Roles of NK 
Cells in the Context of Murine 
Cytomegalovirus and Lymphocytic 
Choriomeningitis Virus Infections

Received: Feb 21, 2024
Revised: May 30, 2024
Accepted: Jun 3, 2024
Published online: Jun 27, 2024

*Correspondence to
Thamer A. Hamdan
Department of Basic Dental Sciences, Faculty 
of Dentistry, Al-Ahliyya Amman University, 
Amman 19328, Jordan.
Email: t.hamdan@ammanu.edu.jo

Copyright © 2024. The Korean Association of 
Immunologists
This is an Open Access article distributed 
under the terms of the Creative Commons 
Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0/) 
which permits unrestricted non-commercial 
use, distribution, and reproduction in any 
medium, provided the original work is properly 
cited.

ORCID iDs
Thamer A. Hamdan 
https://orcid.org/0000-0003-4977-1191

Conflict of Interest
The author declares no potential conflicts of 
interest.

Abbreviations
APC, Ag-presenting cell; CMV, 
cytomegalovirus; DC, dendritic cell; DNAM-1, 
DNAX accessory molecule-1; HCMV, human 
cytomegalovirus; IE, immediate-early; LCMV, 
lymphocytic choriomeningitis virus; MCMV, 
murine cytomegalovirus; NCR1, natural 
cytotoxic receptor 1; NKG2D, NK group 2, 
member D; TNFR2, TNF receptor 2; TRAIL, 
TNF-related apoptosis inducing ligand.

Thamer A. Hamdan  1,2,*

1 Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman 19328, 
Jordan

2 Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman 
University, Amman 19328, Jordan

http://crossmark.crossref.org/dialog/?doi=10.4110/in.2024.24.e29&domain=pdf&date_stamp=2024-06-27
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0003-4977-1191
https://orcid.org/0000-0003-4977-1191
https://orcid.org/0000-0003-4977-1191


adopt different mechanisms based on their distinct biology and could be dissected into two 
models. The infection with DNA viruses (e.g., CMV) is characterized by low level of viremia, 
latency/reactivation and a ‘‘camouflage and/or sabotage’’ strategy. On other hand, infection 
with RNA viruses such as (HIV, hepatitis viruses and LCMV) is characterized with high level 
of viremia as they are highly replicating (5-7).

MCMV is a member of the genus CMV of the beta-herpesviruses and is species-specific 
and is targeting hematopoietic cells with a slow replicative life. MCMV is known to cause 
protracted infection in their hosts. After resolving the acute phase, the virus goes through 
a latency period, which is defined by minimal genes transcription and inert viral progeny 
(8,9). MCMV has been broadly used as a model for delineating the function of NK cells 
in viral control. Before sparking the adaptive immunity, NK cells have appreciated role in 
MCMV infection at early stages (10). MCMV shares more than 80% of genome similarity with 
human CMV (HCMV), and studying the immune response including NK cell response during 
MCMV infections would give meaningful insights and better understanding about the NK cell 
immunity in human models (11).

LCMV is an enveloped RNA virus and is a member of the Arenaviridae family. The house 
mouse (Mus musculus) is the natural host of LCMV and can affect humans. In addition, 
LCMV is extensively used in immunological research as a prototypical and generalizable 
model of viral infection in mice and to study the host-virus interactions for highly replicating 
viruses in humans such as HIV and hepatitis viruses. Many seminal and fascinating findings 
have been achieved due to LCMV research which has been extended to other human chronic 
viral infections that mimic the LCMV infections model (12,13). Using LCMV infection model 
is instrumental for delineating the regulatory involvement of NK cells to virus pathogenesis 
in humans with no direct influence on disease control.

Opposed to the essential and direct role of NK cells in eliminating MCMV infections which is 
described as NK cells sensitive, NK cells have an indirect and casual role in LCMV infections 
control. Because NK cells are not the major defenders in LCMV infections, the latter is 
described as NK cell resistant. Nevertheless, depletion of NK cells has a profound impact on 
the modification of pathogenesis patterns and persistence of LCMV, due to the indirect effect 
of NK cells on LCMV, via modulating the T cell response (14). NK cells depletion experiments 
in murine models infected with LCMV culminate in distinct scenarios of antiviral immunity 
and subsequent virus clearance (14). In this review, we will pinpoint the integral role of 
NK cells in controlling LCMV and MCMV infections and we will shed light on the NK cells 
crosstalk with other immune cells in these two infections models (Table 1, Fig. 1A and B). 
Understanding the NK importance, role, and their cell biology in these two models would 
give insights about the virus host interaction and provide customized therapeutic approaches 
to improve host advantage during infection.

MCMV

MCMV is a member of the genus Muromegalovirus in the subfamily β-herpesvirinae. It shares 
characteristics with the genus CMV, including HCMV. CMVs have large double-stranded 
DNA genomes and can induce cytomegaly in infected cells (15). Hepesviruses including 
MCMV encompass both lytic (productive) and latent (non-productive) infection of the 
natural host (16). Both MCMV and HCMV have a specific host range. Infection of murine 
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models with MCMV is used to simulate the HCMV pathogenesis due to the shared biological 
characteristics in their natural hosts (17-20).

As with other viruses, MCMV is basically targeted by IFNs, which transduced through STAT1 
(21). For instance, mice devoid of Stat1 exhibited unresponsiveness to IFNs and succumb 
within a few days to infection (22,23). IFNs are not only shaping the antiviral immunity via 
modulating the functionality of immune system cellular compartments, but also inhibit the 
MCMV growth by upregulation cell-intrinsic antiviral state (23).

In more details, IFNs confer antiviral state and are present in three types; types I (IFN-α, 
IFN-β), II (IFN-γ), and III (e.g., IFN-lambda) (24,25). Along with their broad role as 
immunomodulators, IFNs have unique expression patterns. For instance, almost all cells 
generates IFN I and III upon sensing the microbial dangers, while IFN II is produced from 
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Table 1. Comparison between MCMV and LCMV in terms of different features
Feature MCMV LCMV
Classification of virus β-beta herpesvirinae (double-stranded DNA) Arenaviridae (single stranded RNA)
Key immune components involved in 
virus control

• NK cells via IFN-γ, Ly49H, NCR1, DNAM-1, NKG2D, TNFR2, IRF4 • CD8 T cells, CD4 T cells
• CD8 T cells, CD4 T cells • IFN-γ
• Proinflammatory cytokines (e.g., IL-33, IL-12, IL-18)
•  IFN-γ via inhibiting viral gene expression, macrophages activation, 

enhancing T and B cell activation
Human model Latent viruses with low level of viremia (e.g., human CMV) Highly replicating viruses with high level of viremia 

(e.g., HIV and hepatitis)
Role of NK cells in eliminating the virus Direct (NK cell sensitive) Indirect (NK cell resistant)
Immune evasion mechanism • Encoding evasion proteins; m152, m04 and m06 IFN-I

• Downregulation of ligand for NKG2D
• miRNA
• Deactivation of NCRs
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Figure 1. The role of NK cells and their crosstalk with the immune cells during MCMV and LCMV infections. Illustration of NK cell role in controlling MCMV (A) 
and LCMV (B) infections. (C, D) depict the crosstalk between NK cells and other immune cells in the context of MCMV and LCMV respectively (created with 
BioRender.ccom).



Ag-activated T lymphocytes and cytokine-activated group 1 innate lymphoid cells (ILC1) 
(26,27). IFN I are the key players in antiviral immunity, and their function overlaps with 
IFN-γ (24,28). The role of IFN-γ in establishing antiviral state is contextual in terms of virus 
replication cycle it inhibits (29).

During MCMV infection, IFN-γ has direct antiviral function via inhibiting viral gene expression 
by modulating the MCMV major immediate-early (IE) gene promoter, resulting in inhibition 
the IE gene transcription (30-33). Furthermore, IFN-γ has indirect immuomodulatory role 
in controlling MCMV infections (22). These roles include activation of macrophages and 
NK cells for enhanced antiviral activities (31,34,35). IFN-γ can establish the antiviral state 
by modulating the differentiation and maturation of T cells and B cells (36,37). Moreover, it 
is documented that IFN-γ has a cardinal role in T cells mediated control CMV infection via 
enhancement of MHC class I–dependent Ag presentation by infected cells (38).

The crucial role of NK cells in defending herpes viruses, including HCMV, is best 
demonstrated by the observation that people with defective NK cells are prone to these 
viruses (39). Human research on NK cells during CMV infections uncovers the integral 
characteristics of NK cell biology. Similar to NK cell lacking humans, NK cell-deficient mice 
are rendered vulnerable to MCMV infection with inefficient control of virus replication (40). 
Defects in NK cell functionality, such as diminished production of IFN-γ or cytotoxicity, also 
result in a case in which the mice exhibit high susceptibility to MCMV infection (40,41).

Based on the mouse strain analyzed, NK cells mount MCMV infection via various 
mechanisms. In the C57BL/6J background mice infected with MCMV infection, the viral 
protein m157, MCMV-encoded MHC I-like molecule, is sensed by the activating receptor 
Ly49H that induces the expansion of Ly49H+ NK cells, resulting in control of the virus and 
production of memory-like NK cells that resemble memory T cells (3,8,9,42). In more details, 
Ly49H conjugates ITAM bearing proteins, the signaling adaptor DAP 10 and DAP12, and 
transmits the signals to stimulates the effector function of NK cells, including degranulation 
and the production of IFN-γ (43,44). Another consequence of DAP12 signaling is the 
enhanced clonal expansion of virus specific NK cells which is further augmented by DAP10 
signaling (45-47). It is noteworthy that 50% of NK cells from B6 mice show expression of 
Ly49H. In case of MCMV infection, Ly49H+ cell populations expand about two- to three-fold 
in the spleen and tenfold in the liver, in an m157-dependent manner (48). Adoptive transfer 
of Ly49H+ NK cells into mice deficient of Ly49H+ NK cells led to their maturation and 
expansion massively in the spleen and liver as demonstrated by upregulation of activation 
markers such as; KLRG1 and Ly6C and the leukosialin CD43 (3,47). After initial activation, 
NK cells gain memory like features after induction from cytokines (49). The generation 
of memory Ly49H+ NK cells showed independence on IL-15 (50). Other than recognition 
of the m157 viral glycoprotein ligand, it is well known that IL-12 promote NK cell and T 
lymphocytes during MCMV infections, through binding the IL-12 with their putative ligand, 
IL-12 receptor, which result in phosphorylation of signaling component STAT4, resulting 
in the translocation to the nucleus and subsequent activation of downstream targets 
and transcription of effector cytokine genes such as IFN-γ (51,52). However, this MCMV 
resistance is applied to phenotypes having Ly49H such as C57BL/6, whereas mice lacking 
Ly49H such as BALB/c are susceptible to MCMV infection (8,53,54).

Since NK cells of BALB/c mice are characterized by deficient Ly49H gene, these murine 
models control the virus at early stages of infection via generation of IFN-γ by NK cells, which 
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is insufficient for effective viral control. Other considerations in Inbred mice strains could 
affect the MCMV pathogenesis such as dendritic cells and MHC haplotypes (55,56).

NK cells express costimulatory molecules which dictate the outcome of MCMV infection. For 
example, DNAX accessory molecule-1 (DNAM-1; CD226) plays a key role in the differentiation 
of NK cells during MCMV infections. It was found that Ab targeted DNAM-1 inhibited both 
the proliferation of MCMV-specific Ly49H+ cells during disease and the formation of memory 
NK cells (57,58).

Furthermore, NK group 2, member D (NKG2D), an inducible activating receptor that is 
expressed mainly by all NK cells (59-61) identifies a family of stress-induced ligands present 
on infected and transformed cells in mice and humans (62). In murine models NKG2D exists 
in two isoforms: NKG2D S and NKG2D L with short and long cytoplasmic tails respectively. 
While NKG2D-S conjugates DAP10 and DAP12, NKG2D L binds to DAP 10 (63,64). It was 
found that NKG2D signaling expands Ly49H-dependent proliferation of NK cells during 
MCMV infections. NKG2D were reported to stimulate IFN-γ secretion from NK cells triggering 
NK cell-mediated cytotoxicity toward target cells expressing its ligands. (60,65,66).

Using infection model with MCMV strains with induced expression of NKG2D ligands 
on infected cells culminated in enhanced proliferation of Ly49H+ NK cells. Unlike the 
Ly49H which is adequate to expand the NK cells, NKG2D signaling is not enough alone for 
the expansion, possibly due to transient expression of a NKG2D-DAP12 complex (67). In 
contrast, NKG2D deficient NK cells were found to be more efficient in MCMV control and 
production IFN-γ compared to NK cell sufficient NKG2D due to the hyper reactive NK cells 
phenotype (68). Mechanistically, IL-15 which is induced by IFNα/β in early phase of infection 
improves NK cells proliferation and maturation, especially in the deficiency of NKG2D, or 
it is likely that NKG2D coordinates signaling of DAP10/DAP12-mediated Ly49H signaling, 
and thereby affects NK cells survival and proliferation (68-70). In consistent, another recent 
compelling study demonstrated that, NKG2D deficient mice or blocking of NKG2D signaling 
early during NK cell development resulted in improved reactivity of natural cytotoxic receptor 
1 (NCR1) and subsequent MCMV control, and this regulatory role of NKG2D toward the 
NCR1 was mediated via DAP12 (71).

A recent study showed that NK cells enhanced the expression of TNF receptor 2 (TNFR2), 
which is linked to increased effector functions during MCMV infections. TNFR2 is induced 
by IL-18 enhancing their sensitivity toward TNFα, resulting in higher NK cells proliferation, 
activation, and glycolytic activity (72). Moreover, it was found that IRF4 expression was 
enhanced after activation of NK cell and in response to MCMV infections and is needed for 
the differentiation and proliferation of virus-specific NK cells by controlling iron uptake (73).

NCR1 (CD335/NKp46) is a murine NK cell activating marker and is a member of Ig-like 
transmembrane glycoproteins (74-76). Mutation of Ncr1 leads to improved NK cell activity 
and efficient response to MCMV infection in two genetically distinct mouse models. For 
instance, the NK cells retrieved from Noé mice, C57BL/6J mice with-ethyl-N-nitrosourea–
induced mutations, show hyperresponsiveness. This is evident upon infection with MCMV 
and after coculture with YAC-1 which is mouse T lymphoma cell line and is susceptible to 
NK cell activity. The hyperactive NK cells in Noé mice were due to point mutation of the Ncr1 
gene, ensuing in abolished NCR1 expression. Consistently, Ncr1iCre/iCre knock-in mice, in 
which NCR1 expression on the NK cells is impaired due to low levels of NCR1 transcripts, 
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are tolerant to MCMV infection than WT animals. The hyperreactivity of NK cells in two 
independent mouse genetic models is demonstrated by less viral load and higher percentages 
of functional NK cells (77).

It is well documented that NK cells have a direct contribution on the limiting of virus 
pathogenesis and a crossbridge role in aiding CD8 T cell responses. For instance, Robbins et 
al. (55), found that early control of MCMV by NK cells is accompanied with low production of 
plasmacytoid dendritic cells (DCs) cytokines which prevent the deletion of conventional DCs 
and subsequent enhancing of antiviral CD8 T cells. By the same token, NK cells are not the 
only warriors in controlling the MCMV. For example, CD8 T cells are required for early MCMV 
control in the absence of Ly49H–m157 interaction, and this role T cells is minimal in the 
presence of intact Ly49H. Furthermore, the proinflammatory cytokines produced from NK 
cells and other immune cells drive the antiviral CD8 T cells response directly, and indirectly 
via priming of DC (10). It is well documented that CD4 T cells are efficient drivers to control 
MCMV in salivary glands by means of IFN-γ secretion and not by exerting helping functions 
for B cells and CD8 T cells (11,78,79).

The expansion of Ly49H+ NK cells is not only mediated by activating receptors (e.g., Ly49H, 
NCR1 and NKG2D), costimulatory markers (e.g., DNAM 1) and cellular compartments (e.g., 
NK cells, cytotoxic and Th cells), but also via proinflammatory cytokines. For example, 
IL-33 induces ST2 signaling in NK cells, contributing to efficient expansion of Ly49H+ NK 
cells and efficient MCMV control via augmenting IL-12-induced IFN-γ secretion by NK cells 
(80). Moreover, IL18 which depend on MyD88 downstream signaling is needed for efficient 
expansion of NK cells and massive IFN-γ during MCMV infection, and the MyD88 expression 
is enhanced by IL-12 signaling through STAT4 (81).

As formerly mentioned, NK cells generate a coordinated antiviral defense against a plethora 
of viral infections including MCMV, culminating in virus elimination (82,83). NK cells curtail 
the detrimental consequences of acute MCMV infection and regulate persistent infection. 
This is supported by selective depletion of NK cells by administering mice with Ab to asialo 
GM1, a neutral glycosphingolipid expressed on NK cells. NK cell deletion substantially 
accelerated MCMV dissemination in NK cells depleted mice (84).

In the context of HCMV and MCMV infection, MHC I molecules are downregulated in to 
sidestep presentation of viral peptides to cytotoxic T cells. Besides, MHC class I down-
regulation leads to “missing-self ” recognition axis and NK cell-driven lysis of infected cells. 
To evade from the immune response, CMVs either selectively downregulate MHC I molecules 
that are potent presenters of peptide to CD8 T cells, while sparing those that are integral in 
engaging inhibitory NK cell receptors (HCMV) (85) or keep selected MHC class I to the cell 
surface (MCMV) (86).

MCMV are adept in developing various strategies in immune evasion, which is part of natural 
selection process and pathogen driven evolution These evasion strategies make the contest 
against infections complicated. To exemplify, MCMV uses encoded evasion proteins which 
are MHC I expression regulators. m152 and m06 are MHC I negative regulators that reduce 
the expression of MHC I. These two proteins retain MHC I molecules intracellularly and 
thereby avoid CD8 T cell mediated killing. Another encoded protein from MCMV called m04 
is considered MHC I positive regulator as it binds to MHC I and translocate them to the 
cell surface and hence restoring the ‘self ’ signature and allowing the binding of inhibitory 
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receptors Ly49, rendering them inaccessible to NK cell killing (87). Further, engagement of 
MHC I and m04 interfere with peptide loading or recognition by TCR (88). Moreover, MCMV 
downregulates the ligand for NKG2D, NK cell activating marker, and subsequently impairs 
the NK cell activity (89). It is reported that gp40, encoded my m152, was found inhibits 
RAE-1γ ligand for NKG2D and hence limiting NK cells activity (90). In addition, viruses use 
their miRNA (noncoding regulatory RNA) to hinder NK cell activity (91). By the same token, 
murine NCRs are targets for immune evasion proteins. Studies on HCMV showed that pp65, 
a tegument protein in HCMV, can counteract NKp30 activation (92). During evolution, 
immune cells including the NK cells are evolved to encounter immune evasions by choosing 
different pathways. It is may well be that the evasion proteins have immunodominant 
epitopes that are possible presented by a given MHC molecule on the surface of the MCMV-
infected cell and provoke cellular immunity (93). It is also possible that some MHC alleles 
evolves via polymorphisms that can alter the peptide loading with peptide loading complex, 
a multiunit membrane complex in the endoplasmic reticulum which coordinates peptide 
translocation into the endoplasmic reticulum (94,95). When MCMV evade from NK cells 
mediated killing, this would substantiate the requirement for CD8 T cells during the early 
viral control to mount the MCMV infection (10). Moreover, the immune evasion of MCMV 
which result in deletion of MHC class I molecules in the salivary gland preclude the CD8 T 
cells from activation and performing their effector functions, confining the local activation 
to CD4 T cells (78). Nevertheless, further studies are needed to investigate the mechanism of 
how immune cells can overcome the evasion of virus from immunosurveillance.

As previously mentioned, NK cells have indispensable role in elimination the MCMV 
infection, by means of cytotoxicity and IFN-γ secretion (4). Studies on humans with NK cells 
deficiency reveal their vulnerability to herpesviruses including HCMV (96,97). Similarly, NK 
cells-depleted mice by Abs exhibited enhanced viral synthesis and pathogenesis (84).

LCMV

LCMV belongs to Arenaviridae family of viruses (98). Morphologically, LCMV has ribosomes 
resemble “sandy” when visualized by electron microscopy (hence their name) (99). The 
non-cytopathic LCMV is replicating in rodents, the principle reservoir and can afflict humans 
as well, where it can cause disease ranging from asymptomatic to severe neurological 
complications (100). LCMV was identified by Charles Armstrong over eighty years ago in 
patients with aseptic encephalitis in St. Louis (101).

LCMV is considered an experimental model to address the virus-host immunity interaction 
including the pathogenesis and persistence. It is noteworthy that, LCMV interaction with the 
host is largely dependent on the strain and dose of LCMV (102).

LCMV is an enveloped virus with single stranded RNA and arranged in bi-segmented 
ambisense, (L and S) that encode three major structural proteins: the nucleoprotein, NP and 
two mature virion glycoproteins, GP-1 and GP-2 (103-105).

LCMV enters the host via binding of their glycoprotein to αDG-expressing cells such as DCs, 
macrophages, and fibroblastic reticular cells (106,107). Upon attachment of LCMV to the 
target, the viral membrane unites with the cell membrane and become internalized in the 
vesicle where it delivers the genetic material in cytoplasm (108).
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Various LCMV strains were isolated, and studies were focused on three main strains; the 
Armstrong strain and is referred to neurotropic, the Traub strain and the WE strain. Traub 
and WE strain are described as viscerotropic (102). Further, LCMV variants were generated 
from these 3 main isolates; Docile strains are derivatives of WE strain, and clone 13 is a 
derivative of Armstrong with a difference in two point mutations present in RNA polymerase 
and glycoprotein (109,110). Moreover, the infectivity and tropism of clone 13 strain was 
shown to be higher compared to the WE strain, due to higher affinity of clone 13 strain to 
bind α-DG (7,111). Upon infection, LCMV can elicit distinct patterns of immune response 
based on the strain. For instance, Armstrong and WE cause an acute infection in mice, 
in which the virus is resolved in a few days. Clone 13 and docile strain can lead to chronic 
infection defined by T cell exhaustion and high virus load.

As a part of innate immunity, NK cells act in immediate action during early viral infection and 
in proximity to T cell activation sites and precede T cell response, but the responses can be 
concurrent, especially when the virus persists (112,113).

During viral infection, engagement of Toll-like receptor to germs or proinflammatory 
cytokines secreted from DCs drive the NK cells to be stimulated (114,115). Importantly, 
IFN-I is essential proinflammatory cytokine that activates NK cell (116). In addition, NK 
cells recognize foreign substances via germline-encoded inhibitory and activating receptors 
through a variety of activating and inhibitory receptors, which affects the cytotoxicity against 
virally infected cells with involvement in disease progression (117).

In contrary to the integral and direct role of NK cells in control of herpesvirus infection, 
NK cells are unable to curb the LCMV replication in murine models (118), despite the 
deficiency of adaptive cellular compartments (119). Thus, LCMV infection is utilized as 
a powerful experimental tool for addressing the regulatory role of NK cell in shaping the 
disease pathogenesis (120). During LCMV infection, NK cells were profoundly activated 
and accumulated dramatically in the liver due to proliferation (121,122). While NK cells are 
dispensable for control of LCMV, NK cells have the potential to shape adaptive immunity by 
regulating T cell responses (123-125).

In the context of LCMV infection, NK cells are effectively stimulated by a panel of 
inflammatory cytokine such as IFN-I, culminating in downregulation of LCMV-triggered CD4 
and CD8T cell immunity as well as DCs function (122,126-129). Whereas NK cell–intrinsic 
IFN-I signaling enhances NK cell in terms of proliferation and effector functions (130,131), 
expression of IFNAR1 on antiviral T cells has been reported to protect them from NK cell–
mediated lysis (132,133). Consistently, blockade of IFN-I signaling in NK cells improves 
helper and cytotoxic T cell responses, promotes humoral immune responses, and thereby 
enhances the control of persistent virus infection (134). Further, NK cell-mediated lysis of T 
and B cells could prevent detrimental immune-mediated liver pathology (126) and expedite 
viral dissemination during chronic LCMV infection (122,126,128,129). Similar regulatory 
functions of NK cells during acute LCMV infection attributed to reduced virus-specific 
memory T-cell and B-cell responses (135). Moreover, TNF-related apoptosis inducing ligand 
(TRAIL) expressed by immune cells enhances IL-15 signaling-induced granzyme B generation 
in NK cells, resulting in improved NK cell-mediated T cell killing (136). A recent study 
showed that LCMV specific T cells mainly Th cells and T follicular helper cells is mediated by 
B cells intrinsic IL-27 resulting in purging the host from the virus (137).
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Infection with LCMV leads to distinct scenarios of anti-viral T cell immunity and viral 
clearance. For instance, murine models given WE or Armstrong develop acute infection 
with robust T cell response and subsequent effective viral control (138,139). While infection 
with clone 13 or docile variants establishes chronic infection and impairs the anti-viral T cell 
function and enabling the viral persistence and associated eventually with T cells exhaustion 
driven by high viral dissemination (7,140). Further, the NK cells were reported to be more 
active in chronic infection compared to the acute one (128). In more details, mice inculcated 
with low doses of LCMV clone 13 developed a robust effector CD8 T cell response and viral 
elimination. Using intermediate dose of clone 13, mice developed partial T cell exhaustion 
and fulminant immunopathology and partial T cell exhaustion. Whereas infection with high 
dose led to a scenario in which; the T cell is exhausted with minimal liver damage and the 
virus persisted (141-143).

THE CROSSTALK BETWEEN NK CELLS AND OTHER 
IMMUNE CELLS
Following infection, NK cells become activated and can involve to host immunity by direct 
killing the infected cells and synthesizing antiviral cytokines such as IFN-γ, resulting in direct 
elimination of virus or induction subsequent immune response, or a combination of these 
events. Nevertheless, NK cells influence adaptive immunity via a plethora of mechanisms. 
For example, NK cells affect T cell response by releasing cytokines which lead to T cell 
immunity activation (e.g., IFN-γ) or down modulation (e.g., IL-10) (144). Another mechanism 
is competing NK cells with T cells for the availability of cytokines such as IL-12 (145). Further, 
direct engagement of NK cells with T cells lead to inhibition of NK cells (112). NK cells have 
unique bidirectional cross talk with distinct immune cells including T cells during MCMV 
and LCMV, resulting in modulation of T cell responses positively or negatively and directly or 
indirectly (Fig. 1C and D).

The role of NK cells in positive regulation of T cell response is mainly mediated by IFN-γ as 
demonstrated by substantial studies on human and murine models. Upon infection with 
viral infection including MCMV and LCMV, NK cells are activated in timely manner and 
become a potent producer for IFN-γ, leading to virus control and enhance the expansion of 
primary and memory helper and cytotoxic T cells (146-148). It is documented that IFN-γ from 
NK cells induce DC maturation leading to T lymphocytes activation either by increased Ag 
presentation or by means of proinflammatory cytokines production (149-151).

During MCMV infections, NK cells have an indispensable and direct role in eliminating 
the virus at the early phases along with their exquisite role in modulating other immune 
cells. For instance, following MCMV infection, MCMV-infected DCs are a major source of 
infectious viral progeny, and immature DCs are a principal target of MCMV virus (152). NK 
cells were reported to attack and clear m157 expressing infected DCs in direct manner. The 
low quantity of DC numbers led to suboptimal T cell induction, and subsequent elevated viral 
dissemination (153). In addition, NK cells can increase the expression of CD25 during MCMV 
infection with high affinity to IL-2, resulting in potential competition with T cells for the 
presence of low levels of IL-2 (154).

In direct manner, NK cell secretes IL-10 upon infection with MCMV and results in a curtailed 
CD8+ T cell response and a camouflage from liver pathology (144). In depletion experiments 
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during MCMV infections of immunocompetent mice, it was found that, the deficiency of NK 
cells led to enhanced CD4 and CD8 T cell IFN-γ production, and in the case of CD8 T cells, 
increased BrdU incorporation and cell expansion (155). This inhibitory effect of NK cells against 
T cells could be due to perforin, as NK cells express perforin and have been shown to kill a 
variety of hematopoietic cells including T and B cell progenitors and Ag-presenting cell (APC) 
such as members monocyte/macrophage and DC lineages (156,157). Another complementary 
study showed that NK cells specifically eliminated activated CD4+ T cells in the salivary gland 
during MCMV infections. This was dependent on TRAIL expression by NK cells (158).

During LCMV infection, NK cells can negatively modulate the T cell immunity collaterally 
via interaction with DCs. In more detail, NK cells alter T cell immunity by reducing the 
availability of APCs. For instance, NK cell depletion experiments during chronic LCMV 
showed improved priming of cytotoxic T cells by Ag presenting cells in primary phase 
of response and this effect was not due to alteration in functionality or amount of DCs, 
indicating the specific elimination of virally induced APCs (128).

In a direct manner, NK cells can also restrain anti-viral T cell responses by recognizing and 
eliminating activated T cells as demonstrated in various human and mice settings upon 
infection with LCMV (159). For example, LCMV induced T cell express NKG2D ligand that 
engage NKG2D receptor on NK cells, and led to NK cell mediated lysis of T cells by means 
of perforin (122,160,161). Similarly, LCMV infected mice with depleted NK cells at early time 
points were more able to mount the virus by limiting the elimination of Th cells which assist 
the cytotoxic T cell activation (126). Moreover, depletion of NK cells mitigates the virus-induced 
liver injury due to effective T cell response, imparting the acute signature for the chronic LCMV 
infection (122,126). Recent study reported the inhibitory role of liver NK cells against hepatic 
antiviral CD8 T cells via PD-1-PD-L1 axis in LCMV infections (121). Another recent study showed 
that Qa-1b expression is primarily increased on B cells following LCMV infection. Ablation of 
Qa-1b leads to enhanced NK cell mediated regulation of LCMV-specific T lymphocytes (162).

As previously mentioned, using different inocula of LCMV virus infection gives insights 
into distinct patterns of anti-viral T cell immunity and virus control, and NK cell depletion 
experiments impart contextual changes for T cell response and virus clearance. For example, 
deletion of NK cells in mice infected with high dose of LCMV can enhance T cell immunity 
and subsequent viral control infection (122,126). In the setting where intermediate dose of 
LCMV is used, NK cells restrain the number of anti-viral T cells and thereby facilitates the 
viral dissemination. The liver injury in this setting is nuanced as the viral titer is inadequate 
to cause T cell exhaustion, culminating in a situation in which functional T cells are 
encountered by massive amount of infected cells and leading to fatal liver damage. Ablation 
of NK cells in this setting results in hyperproliferative T cell response with more ability to 
clear the infection, and hence impeding the liver pathology (122). Nevertheless, the influence 
of NK cells on calibrating T cell responses is not always prejudicial for the host. In the 
context of infections with high virus load, NK cells are deemed helpful by hampering T cell 
immunity, exacerbating the viral dissemination and T cell exhaustion, and hence limiting T 
cell mediated immunopathology (122).

To evade from NK cell killing, T cells benefit from expression of inhibitory receptor 2B4 on NK 
cells, since NK cells lacking 2B4 attack and eliminate T cells in LCMV infection (127). Another 
evolving strategy is type I IFN, which is reported to safeguard T cells from NK cells lysis via 
perforin and NCR1 expression as well as through altering the expression of inhibitory receptors 
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on NK cell (132,133). A recent study showed that LCMV docile strain evade from the host 
immunity via establishing a state of slow virus propagation due to reduced PRR activation and 
subsequent IFN-I production resulting in downregulated innate and adaptive immunity (163).

CONCLUDING REMARKS

In this review, we have sought to address the role of NK cells in viral control and their 
interplay with immune cells during MCMV and LCMV infections in murine models. It 
is obviously apparent that the role of NK cells is complex and context dependent. More 
specifically, the role of NK cells is central in eliminating the MCMV, which is used to model 
HCMV. On other hand, NK cells have a casual role in controlling LCMV via affecting other 
immune cells which can impact the outcome of disease. To conclude, uncovering the key 
aspects of NK cells roles toward infections remains a key avenue of upcoming research 
necessary for the establishment of future NK cell-targeted therapies.
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