
International Journal of Advanced Smart Convergence Vol.13 No.3 109-116 (2024)

http://dx.doi.org/10.7236/IJASC.2024.13.3.109

Copyright© 2024 by The Institute of Internet, Broadcasting and Communication. This is an Open Access article distributed under the terms of

the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0)

A Study on Cold Start and Resource Improvement

Using Time Warming Allocation Engine in Serverless Computing

Gun-Woo Kim*, Seok-Jae Moon**, Byung-Joon Park***

*Master, Department of Computer Science, Kwangwoon University, Korea
**Professor, Department of Artificial Intelligence Institute of Information Technology,

KwangWoon University, Korea
***Professor, Department of Computer Science, Kwangwoon University, Korea.

E-mail: {kgwo0528, msj8086, bjpark}@kw.ac.kr

Abstract

 With the advent of serverless computing, cloud customers no longer needed to maintain and manage server

environments directly. Instead, cloud service providers took on that role, managing and maintaining the server

environment according to customer requests, a concept known as Function as a Service (FaaS). This service

demonstrated improvements in operational costs and resource utilization over traditional cloud computing,

offering various advantages such as enhanced scalability. However, a delay occurred in processing and

returning results to user requests, a phenomenon referred to as the cold start problem. This paper proposed

the Time Warming Allocation Engine (TWAE) to improve resource management and mitigate the cold start

problem in Function as a Service. The proposed engine comprised a collection module, a learning module, a

classification module, and an allocation module. Additionally, it utilized a list called Pre-Warming. Through

this approach, it suggested directions for improving cold start issues and resource utilization according to

different time periods.

Keywords: Serverless Computing, Cloud Computing, Reinforcement Learning, Resource Provisioning, Integrated

Environmental Management

1. Introduction

The advent of cloud computing marked a significant leap towards viewing computing as a utility.

Application architectures rapidly evolved from monolithic structures to service-oriented architectures, and then

to microservices architectures. This evolution recognized the potential of executing small pieces of code as

functions, leading to today’s Function as a Service (FaaS) [1]. Serverless computing is a model where cloud

customers write code without needing to maintain and manage server environments directly; instead, cloud

service providers handle server provisioning and management tasks [2]. Notable serverless services include

Amazon Lambda, Google Cloud Functions, and Microsoft Azure Serverless. FaaS, a form of serverless

IJASC 24-3-12

Manuscript Received: July. 13. 2024 / Revised: July. 21. 2024 / Accepted: July. 26. 2024

Corresponding Author: msj8086@kw.ac.kr

Tel: +82 -10-7753-8086, Fax: +82-050-4366-4238

Author’s affiliation Professor, Department of Artificial Intelligence Institute of Information Technology, KwangWoon University, Korea

110 International Journal of Advanced Smart Convergence Vol.13 No.3 109-116 (2024)

computing, allows cloud customers to use specific functions without maintaining servers, allocating resources

only when needed, and charging based on actual usage [3]. This model offers advantages in operational costs,

resource consumption, ease of application and product development, and scalability. Despite these benefits,

several issues still need addressing. One of the most critical challenges is the cold start problem and resource

allocation issues. The cold start refers to the delay that occurs when a function is invoked for the first time or

after a long period of inactivity, caused by the creation and initialization of a new container for function

execution [4]. This delay affects latency-sensitive applications, such as smart health in the Internet of Things

(IoT), which requires real-time responses to current patient conditions or online data analysis [4]. Various

approaches have been proposed to address this issue, including the use of always-on containers for each

function [5], research on hot and cold container queues for different functions [6], and studies on serverless

utilization in edge computing [7].

This paper proposes the Time Warming Allocation Engine (TWAE) to address the cold start problem and

improve resource utilization in serverless environments. TWAE employs Policy Ensemble Reinforcement

Learning. The learning data is based on historical time-based statistical data. Models generated through time-

based reinforcement learning create pre-warming queues for different times. At this stage, functions are

identified and selected for the pre-warming queue based on service-appropriate thresholds. This approach

improves the existing cold start issues while enabling real-time resource utilization improvement. The structure

of this paper is as follows. Section 2 reviews related research, and Section 3 describes the structure and flow

of the proposed Time Warming Allocation Engine. Section 4 discusses the performance analysis of the

proposed engine, and finally, Section 5 concludes the paper.

2. Related Work

In the serverless computing environment, various models and architectures have been comprehensively

studied to address the cold start problem, resource allocation, and network offloading issues. Approaches to

resolving the cold start problem include utilizing AI-based models for workload prediction, adopting function

fusion techniques to combine sequential functions, implementing advanced container preparation strategies

such as the WLEC architecture using S2LRU++, proposing system-level methods like the SEUSS system

which deploys functions using unikernel snapshots, and frameworks like vHive which store function images

on disk and pre-load the page working set for re-execution. Additionally, pre-warming functions to keep

containers warm and execution-ready has also been proposed [8]. To tackle the offloading issue, several

approaches have been suggested. These include grouping workflow functions within the same instance to

reduce initialization costs and eliminate intermediate data transfer through data locality, and approaches like

FnSched, which adjusts CPU sharing to inspect available resources and accommodate incoming application

calls [9].

3. Proposed System

3.1 Time Warming Allocation Engine (TWAE)

This section discusses the structure of the Time Warming Allocation Engine in a serverless computing

environment. Figure 1 illustrates this structure. The Time Warming Allocation Engine comprises the

Collection Module, Learning Module, Classification Module, and Schedule Module.

◼ Collection Module. In this module, information regarding the type of service requested by the cloud

customer, the required resource usage, and the time needed for future learning is periodically preprocessed.

A Study on Cold Start and Resource Improvement Using Time Warming Allocation Engine in Serverless Computing 111

Cloud customers use APIs defined by the cloud service provider to request functions on the server. After

scheduling, a container with an appropriate environment for the function is allocated to a suitable server. Once

the operation is completed, the results are delivered to the cloud customer, and the resources used, time taken,

and request information are collected in storage. The Collection Module is invoked before the model learning

process, performing preprocessing and verifying the validity and completeness of the collected information.

Figure 1. Overall structure of the proposed system

◼ Collection Module. In this module, information regarding the type of service requested by the cloud

customer, the required resource usage, and the time needed for future learning is periodically preprocessed.

Cloud customers use APIs defined by the cloud service provider to request functions on the server. After

scheduling, a container with an appropriate environment for the function is allocated to a suitable server. Once

the operation is completed, the results are delivered to the cloud customer, and the resources used, time taken,

and request information are collected in storage. The Collection Module is invoked before the model learning

process, performing preprocessing and verifying the validity and completeness of the collected information.

◼ Learning Module. This module uses the time-based statistical data collected by the Collection Module to train

a model that can determine whether a function is in a Hot, Warm, or Cold state. It flexibly processes various

data, including resource consumption information for each function and dependent services. To achieve this,

Policy Ensemble Reinforcement Learning [10] is employed to assess resource usage and the state of the

functions. The reinforcement learning model is pre-trained to estimate and classify when (time), in what

environment, and how much resources and time each function will consume. This pre-training occurs before

invoking the Classification Module. This approach allows for real-time improvement in resource utilization

by allocating resources tailored to each function and dynamically handling new functions. The Learning

Module is invoked periodically (e.g., every hour) for training. To achieve effective results, various clustering

and neural-network methods can be employed.

◼ Classific Module. This module uses the pre-trained reinforcement learning model to estimate the state (Hot,

Warm, Cold) and resource consumption of each function. The Classification Module includes two subroutines:

Reservation-Classific and Request-Classific. Functions frequently used in the current time frame are classified

as Warm, while those not frequently used are classified as Cold. The Hot state refers to functions called more

frequently than those in the Warm state. Reservation-Classific: This subroutine is invoked every hour (or a

112 International Journal of Advanced Smart Convergence Vol.13 No.3 109-116 (2024)

different interval based on the situation) to determine the state of each function. Request-Classific: This

subroutine is called by the Gateway API whenever there is a function request from a user. It estimates resource

consumption using the pre-trained model and then calls the Schedule Module's Request.

◼ Schedule Module.. This module schedules the appropriate environment for the functions requested by cloud

customers based on their pre-classified states. The Schedule Module consists of the subroutines Pre-Warming,

Pre-Hotting, Colding, and Request, each of which operates according to the classified states. Request: Invoked

by the Classification Module, it sets up the container environment based on the estimated resource

consumption. The periodically operating subroutines are Pre-Warming, Pre-Hotting, and Colding, functioning

in the order listed:

⚫ Pre-Warming: For functions in the Warm state, it preemptively calls dependent services to create

containers.

⚫ Pre-Hotting: For functions in the Hot state, it creates not only the dependent services but also a

container ready for the function service.

⚫ Colding: For functions in the Cold state, it terminates the containers of previously Warm or Hot

functions' dependent services.

By implementing these routines, the Schedule Module aims to reduce cold start latency, operational costs,

and improve Quality of Experience (QoE).

3.2 Time Warming Allocation Engine Sequence Diagram

Figure 2 illustrates the data flow of the proposed Time Warming Allocation Engine (TWAE) in the form

of a sequence diagram. It represents the overall flow of the TWAE, which is repeated each time a new request

is made by the user.

Figure 3. Time Warming Allocation Engine Sequence Diagram

A Study on Cold Start and Resource Improvement Using Time Warming Allocation Engine in Serverless Computing 113

1 ~ 2. Request Function: When a cloud customer requests a function through the provided API, the request

is passed through the API Gateway to the FaaS Controller.

3. Request Classification Module: The FaaS Controller requests the Classification Module to determine the

appropriate environment for the requested function. The Classification Module selects suitable resources for

the function and requests the Schedule Module.

4 ~ 5. Request Schedule: Based on the values received from the Classification Module, the Schedule Module

calls for the deployment and execution of the function in a container.

6 ~ 9. Return Response & Store Info: Upon completion of the container's task, the response for the requested

function is returned to the cloud customer, and the generated data is stored in storage. Additionally, the

container that has completed its operation is terminated.

10 ~ 14. Request Collection Module: Periodically, the Collection Module checks the validity and

completeness of the data in storage, performing preprocessing. Clustering may be added during the

preprocessing process.

15 ~ 19. Request Learning Module: Periodically, the Learning Module uses the preprocessed time-based

resource statistics data in storage to train a model using Policy Ensemble Reinforcement Learning. The trained

model updates the Classification Module's model for future classifications.

20 ~ 30. Request Classification Module: Every hour, the Classification Module is called for Pre-Warming,

Pre-Hotting, and Colding. This process pre-creates dependent services or terminates previously created ones.

3.3 Time Warming Allocation Engine Algorithm

Algorithm 1 lists the execution steps of the Time Warming Allocation Engine according to the sequence

diagram. This method was implemented in Python for experimentation with Kubernetes and Knative.

Sequence Algorithm 1 TWAE: FaaS Controller

1: INPUT : Cloud Consumer Request Info

2: BEGIN:

3: # BEGIN BY Cloud Consumer Request

4: Sub_routine_flag, Consumer_request_detail = FWAE.Formatting(Consumer_Request_Info);

5: # Consumer_Request_Info was the request information from the cloud consumer.

6: # Split the required data through data formatting.

7: # The cloud consumer referenced the API defined by the cloud provider to request the desired

function. The request data from the cloud consumer was represented as.

8: FWAE.Classific_Module.Request(Sub_routine_flag[0], Consumer_request_detail);

9: # The arguments of the Request were Sub_routine_flag and Consumer_request_info.

10: # Sub_routine_flags: 1 referred to Request-Classific, and 2 referred to Reservation-Classific.

11: FWAE.Collection_Module.Request();

12: # When the requested function task was completely finished, the data was preprocessed using

the Collection Module and then stored in the Storage.

13: # Collection_Module can be used periodically to update or whenever a user’s request is

processed.

14: IF Every Hour on the Hour:

15: FWAE.Classific_Module.Request(Sub_routine_flag[1], NULL);

114 International Journal of Advanced Smart Convergence Vol.13 No.3 109-116 (2024)

16: # The time could vary depending on the configuration.

17: # In the called Classific Module with the flag value set to 2, each subroutine operated in

sequence: Pre-Warming, Pre-Hotting, and Colding.

18: FWAE.Learning_Module.Request();

19: # When the Learning Module was called, it trained the model using Policy Ensemble

Reinforcement Learning.

20: # If training was completed, it updated the existing model in the Classific_Module through the

internal function Update_Model(Model).

21: END

4. EXPERIMENTS AND RESULTS

In this section, the environment for analyzing the performance of the proposed Time Warming Allocation

Engine was established using Kubernetes and Knative. The simulation structure consists of three host servers,

each with the same configuration as shown in Table 1. The scheduling methods were implemented using

Python and Ruby. For the experiment, data from Azure Function 2019 [11] was preprocessed to create time-

based simulation data. The schema structure of the simulation data includes Timestamp, Service Type,

Execution Time Percentage, Memory Usage Percentage, among other attributes. Additionally, this study

referenced widely used open-source FaaS benchmarking [12] to incorporate different runtime behaviors and

resource requirements in a microservice manner.

Table 1. Experiment Specification

Item Details

Processor

Memory

Storage

Network

OS

Intel(R) Core(TM) i9-12900 @ 3.20GHz - 16

64 GB

2 TB HDD

10 Gbit/s network card

Ubuntu 20.04

In this experiment, the evaluation was conducted based on the recently proposed heuristic-based approach

ENSURE [13], to assess whether the system can adapt to the varying request frequencies of cloud customers

over different time periods, maintain Quality of Experience (QoE), and optimize resource utilization.

Figure 4. RL Training Figure 5. RL Agent 99% End to
end Latency

Figrue 6. RL Training in
Multi Tenant

A Study on Cold Start and Resource Improvement Using Time Warming Allocation Engine in Serverless Computing 115

To verify the convergence of the model trained with Policy Ensemble Reinforcement Learning, the

previously described data was used for training. The evolution of rewards per episode was analyzed, as shown

in Figure 4. Convergence was observed after approximately 200 episodes.

For performance evaluation, the trained RL model was compared to the threshold-based autoscaler

ENSURE. ENSURE’s approach used parameters and thresholds as specified in its respective paper. The

comparison results indicated that the RL model trained using the proposed method maintained approximately

20% higher CPU utilization than ENSURE. This is illustrated in Figure 5. The reason for this result is that the

traditional ENSURE method allocated more resources to containers compared to the RL model-based approach

proposed in this paper. This demonstrates that the Policy Ensemble Reinforcement Learning model improved

over traditional heuristic-based approaches in complex environments.

Lastly, performance evaluation was conducted by applying the system to a multi-tenant environment. Multi-

tenancy refers to an environment where multiple users share the same infrastructure while independently

operating their data and applications. Serverless platforms inherently have a multi-tenant environment. It was

observed in Figure 5 that the multi-tenant environment had relatively higher latency. This issue arises because

various RL agents are making resource allocation decisions, as shown in Figure 6. The decisions of different

RL agents led to higher volatility and lack of stable convergence. This indicates the need for support systems

for training convergence and performance mitigation when using RL agents in multi-tenant environments.

5. CONCLUSION

This paper proposed the Time Warming Allocation Engine (TWAE) to address the cold start problem in

multi-tenant environments using Ensemble Policy Reinforcement Learning. The proposed Ensemble

Reinforcement Learning utilized Boltzmann methods and voting mechanisms, trained with historical function-

specific statistical data. The generated model classified functions into Hot, Warm, and Cold states and

determined the appropriate container resource allocation for each function. The environment was set up using

Kubernetes and Knative, with reference to the Microsoft Azure Dataset. This demonstrated that the proposed

TWAE is suitable for solving the cold start problem in serverless computing and showed improvements in

resource allocation predictions for each function.

However, guaranteeing convergence in multi-tenant applications proved challenging. Relying solely on

historical function usage statistics was insufficient to fully consider user requirements. Future work is needed

to develop systems that ensure training convergence in multi-tenant environments, address network offload

issues, and incorporate hardware design solutions. These efforts aim to more efficiently solve cold start and

security problems.

Acknowledgement

This work is financially supported by Korea Ministry of Environment(MOE) Graduate School specialized

in Integrated Pollution Prevention and Control Project.

References

[1] Mohammad S. Aslanpour, Adel N. Toosi, Claudio Cicconetti, Bahman Javadi, Peter Sbarski, Davide Taibi, Marcos

Assuncao, Sukhpal Singh Gill, Raj Gaire, and Schahram Dustdar, “Serverless Edge Computing: Vision and

Challenges”, In Proceedings of the 2021 Australasian Computer Science Week Multiconference (ACSW '21), 2021,

DOI: doi.org/10.1145/3437378.3444367

116 International Journal of Advanced Smart Convergence Vol.13 No.3 109-116 (2024)

[2] E. Jonas et al., “Cloud Programming Simplified: A Berkeley View on Serverless Computing,” arXiv, Feb. 2019,

DOI: https://arxiv.org/abs/1902.03383

[3] G. C. Fox, Vatche Ishakian, V. Muthusamy, and A. Slominski, “Status of Serverless Computing and Function-as-a-

Service(FaaS) in Industry and Research,” arXiv, Aug. 2017, DOI: https://doi.org/10.13140/rg.2.2.15007.87206.

[4] P. Vahidinia, B. Farahani and F. S. Aliee, "Cold Start in Serverless Computing: Current Trends and Mitigation

Strategies," 2020 International Conference on Omni-layer Intelligent Systems (COINS), pp. 1-7, Aug. 2020, DOI:

https://10.1109/COINS49042.2020.9191377.

[5] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau, et al., "{SOCK}: Rapid Task Provisioning

with Serverless- Optimized Containers", In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18),

2018., DOI: https://www.usenix.org/conference/atc18/presentation/oakes

[6] G. McGrath and P. R. Brenner, "Serverless Computing: Design, Implementation, and Performance," 2017 IEEE 37th

International Conference on Distributed Computing Systems Workshops (ICDCSW), Atlanta, GA, USA, 2017, pp.

405-410, doi: 10.1109/ICDCSW.2017.36..

[7] A. Das, S. Imai, S. Patterson and M. P. Wittie, "Performance Optimization for Edge-Cloud Serverless Platforms via

Dynamic Task Placement," 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet

Computing (CCGRID), pp. 41-50, May. 2020, DOI: https://10.1109/CCGrid49817.2020.00-89

[8] Golec, Muhammed, et al. "Cold start latency in serverless computing: A systematic review, taxonomy, and future

directions." arXiv preprint arXiv:2310.08437 (2023).

[9] LI, Zijun, et al. The serverless computing survey: A technical primer for design architecture. ACM Computing

Surveys (CSUR), 2022, 54.10s: 1-34.

[10] M. A. Wiering and H. van Hasselt, "Ensemble Algorithms in Reinforcement Learning," in IEEE Transactions on

Systems, Man, and Cybernetics, vol. 38, no. 4, pp. 930-936, Aug. 2008, doi: https://10.1109/TSMCB.2008.920231.

[11] Azure Public Dataset. https://github.com/Azure/AzurePublicDataset/tree/master

[12] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan, Veerendra Ramesh Kakarla, Hima Upadhyay,

and Anshul Gandhi. 2020. ENSURE: Efficient Scheduling and Autonomous Resource Management in Serverless

Environments. In International Conference on Autonomic Computing and Self-Organizing Systems (ACSOS 2020).

1–10.

