Acknowledgement
This research has been supported by the Defense Challengeable Future Technology Program of the Agency for Defense Development, Republic of Korea (No.912780601).
References
- Y. Yazid, I. Ez-Zazi, A. Guerrero-Gonzalez, A. El Oualkadi, and M. Arioua, UAV-Enabled Mobile Edge-Computing for IoT Based on AI: A Comprehensive Review, Drones, vol. 5, no. 4. MDPI AG, p. 148, Dec. 13, 2021, DOI: https://doi.org/10.3390/drones5040148.
- P. McEnroe, S. Wang, and M. Liyanage, A Survey on the Convergence of Edge Computing and AI for UAVs: Opportunities and Challenges, IEEE Internet of Things Journal, vol. 9, no. 17. Institute of Electrical and Electronics Engineers (IEEE), pp. 15435-15459, Sep. 01, 2022, https://doi.org/10.1109/jiot.2022.3176400.
- N. Cheng et al., AI for UAV-Assisted IoT Applications: A Comprehensive Review, IEEE Internet of Things Journal, vol. 10, no. 16. Institute of Electrical and Electronics Engineers (IEEE), pp. 14438-14461, Aug. 15, 2023, https://doi.org/10.1109/jiot.2023.3268316.
- J. C. TOZER, R. H. IRELAND, D. C. BARBER, and A. T. BARKER, Magnetic Impedance Tomographya, Annals of the New York Academy of Sciences, vol. 873, no. 1. Wiley, pp. 353-359, Apr. 1999, https://doi.org/10.1111/j.1749-6632.1999.tb09483.x.
- S. Ha et al., Neural Network for Metal Detection Based on Magnetic Impedance Sensor, Sensors, vol. 21, no. 13. MDPI AG, p. 4456, Jun. 29, 2021, https://doi.org/10.3390/s21134456.
- H. Kim, H. Chae, S. Kwon, and S. Lee, Optimization of Deep Learning Parameters for Magneto-Impedance Sensor in Metal Detection and Classification, Sensors, vol. 23, no. 22. MDPI AG, p. 9259, Nov. 18, 2023, https://doi.org/10.3390/s23229259.
- A. Barnawi, K. Kumar, N. Kumar, B. Alzahrani, and A. Almansour, A Deep Learning Approach for Landmines Detection Based on Airborne Magnetometry Imaging and Edge Computing, Computer Modeling in Engineering & Sciences, vol. 139, no. 2. Computers, Materials and Continua (Tech Science Press), pp. 2117-2137, 2024, https://doi.org/10.32604/cmes.2023.044184.
- L.-S. Yoo, J.-H. Lee, Y.-K. Lee, S.-K. Jung, and Y. Choi, Application of a Drone Magnetometer System to Military Mine Detection in the Demilitarized Zone, Sensors, vol. 21, no. 9. MDPI AG, p. 3175, May 03, 2021, https://doi.org/10.3390/s21093175.
- G. Wang et al., Anomaly Detection for Data from Unmanned Systems via Improved Graph Neural Networks with Attention Mechanism, Drones, vol. 7, no. 5. MDPI AG, p. 326, May 19, 2023, https://doi.org/10.3390/drones7050326.
- Guinon, Jose Luis, et al., Moving average and Savitzki-Golay smoothing filters using Mathcad, Papers International Conference on Engineering and Education 2007(ICEE), pp. 3-7, September 2007.
- H. Azami, K. Mohammadi, and B. Bozorgtabar, An Improved Signal Segmentation Using Moving Average and Savitzky-Golay Filter, Journal of Signal and Information Processing, vol. 03, no. 01. Scientific Research Publishing, Inc., pp. 39-44, 2012, https://doi.org/10.4236/jsip.2012.31006.
- J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, Empirical Evaluation of Gated Recurrent Neural Networks on Seq uence Modeling. arXiv, 2014, https://doi.org/10.48550/ARXIV.1412.3555.