DOI QR코드

DOI QR Code

목질진흙버섯HN00K9 배양 귀리의 단백질함량 및 생물활성 변화

Changes in protein content and bioactive activity in Phellinus linteus HN00K9 cultured on oat

  • 김자윤 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 강희완 (한경국립대학교 생명공학부)
  • Ja-Yoon Kim (Mushroom Science Division, National Institute of Horticultural and Herbal Science, RDA) ;
  • Hee-Wan Kang (School of Biotechnology, Division of Horticultural Biotechnology, Hankyong National University)
  • 투고 : 2024.08.05
  • 심사 : 2024.09.23
  • 발행 : 2024.09.30

초록

목질진흙버섯 HN00K9 배양 귀리(PCO)의 조단백질 함량은 12.9%로 배양되지 않은 귀리(UCO)의 11.26%보다 높았으며 총 유리 아미노산 함량은 각각 11,429 mg과 9,686 mg/100 g였으며 글루탐산은 PCO의 총 아미노산의 21%를 차지하였으며 히스티딘 함량은 UCO에 비해 PCO에서 51% 이상 증가했다. PCO의 총 폴리페놀 함량은 275 GAE/g로 UCO의 135 mg 보다 2배 이상 높았다. DPPH 라디칼 소거능은 PCO에서 15.5%였으며, UCO의 3.5%에 비해 5배 이상의 활성을 보였다. PCO의 β-글루칸 함량은 12.5 g/100 g로 UCO의 3.2 g/100 g에 비해 5배 이상 증가하였다. 따라서 목질진흙버섯 HN00K9 배양 귀리는 다양한 기능성 식품 소재로 활용될 수 있을 것으로 사료 된다.

This study aimed to analyze crude protein, amino acid and bioactive changes in Phellinus linteus HN00K9 cultured oat. The crude protein content of P. linteus cultured oat (PCO) was 12.9%, which was higher than that of uncultured oats (UCO) as control at 11.26%. The total free amino acid contents of PCO and UCO were 11,4 mg/100 g and 9,686.205 mg/100 g, respectively. Glutamic acid accounted for 21% of the total amino acids of PCO, and the histidine content was increased by more than 51% in PCO compared to UCO. The total polyphenol content of PCO was 275 mg GAE/g, which was more than twice that of UCO (135 mg). The DPPH radical scavenging activity was 15.5% in PCO, which was more than five times that of UCO (3.5%). The β-glucan content of PCO was 12.5 g/100 g, which was more than five times that of UCO (3.2 g/100 g). Therefore, it is believed that PCO can be utilized as a material for various functional foods.

키워드

과제정보

본 연구는 과학기술정보통신부 연구개발특구진흥재단 민간 투자형 R&BD (과제번호: 2022-DD-RD-0574-02) 지원으로 수행된 연구 결과이며 연구비 지원에 감사드립니다.

참고문헌

  1. Blois MS. 1958. Antioxidant determination by the use of a stable free radical. Nature 181: 1199-1200. 
  2. Cai S, Huang C, Ji B, Zhou F, Wise M, Zhang D, Yang P. 2011. In vitro antioxidant activity and inhibitory effect, on oleic acid-induced hepatic steatosis, of fractions and subfractions from oat (Avena sativa L.) ethanol extract. Food chem 124: 900-905. 
  3. Chan KM, Decker EA, Means MJ, 1993. Extraction and activity of carnosine, a naturally occurring antioxodant in brrf muscle. J Food Sci 58: 1-4. 
  4. Daniel S. 2010. Medicinal mushroom Phellinus linteus as an alternative cancer therapy (Review). Exp Ther Med 1:407-411.
  5. Dimberg LH, Theander O, Lingnert H. 1993. Avenanthramidesa group of phenolic antioxidants in oats. Cereal Chem 70: 637-641. 
  6. FDA. 1997. FDA allows whole oat foods to make health claim on reducing the risk of heart disease. Food and Drug Administration. U.S. Department of Health and Human Services. USA, Talk Paper 22 January 1997. 
  7. Han OK, Park TI, Park HH, Park KH, Oh YJ, Kim KJ, Song TH, Jang YJ, Kim DH, Hwang JJ, Kwon YU. 2014. "Suyang" A new naked oat cultivar with early-heading and high yielding. Korean J Breed Sci 46: 323-327. 
  8. Jin SW, Im SB, Kim KJ, Yun KW, Jeong SW, Koh YW, Je HS, Cho IK, Jang JY, Seo KS. 2017. Changes of chemical compositions of cereals by Phellinus linteus mycelial cultivation. J Mushrooms 15: 229-236. 
  9. Jung JY, Lee IK, Seok SJ, Lee HJ, Lee HJ, Kim YH, Yun BS. 2008. Antioxidant polyphenols from the mycelial culture of the medicinal fungi Inonotus xeranticus and Phellinus linteus. J Applied Microbiol 104: 1824-1832. 
  10. Kang HW, Lee MH, Seo GS. 2013. Antioxidant and anti-inflammatory effects of Phellinus linteus HN1009K. Kor J Mycol 41: 243-247. 
  11. Kim JY, Baek YL, Lee SH, Kang HW. 2023. Characteristics of protein content and antioxidant activation in soybean cultured with Phellinus linteus HN00K9. J Mushroom 21:126-131. 
  12. Lee IK, Han MS, Lee MS, Kim YS, Yun BS. 2010. Styrylpyrones from the medicinal fungus Phellinus baumii and their antioxidant properties. Bioorg Med Chem Lett 20: 5459-5461. 
  13. aLee IK, Jung JY, Kim YH, Yun BS. 2009. Phellinins A1and A2, new styrylpyrones from the culture broth of Phellinus sp. KACC93057P: II. Physicochemical properties and structure elucidation. J Antibiotics 62: 635-637. 
  14. bLee IK, Seo GS, Jeon NB, Kang HW, Yun BS. 2009. Phellinins A1 and A2, new styrylpyrones from the culture broth of Phellinus sp. KACC93057P: I. Fermentation, taxonomy, isolation and biological properties. J Antibiotics 62: 631-634. 
  15. Lee HD, Lee KS. 2010. β-glucan and glucosamine contents in various cereals cultured with mushroom mycelia. Kor J Mycol 37: 167-172. 
  16. Lee YG, Lee WM, Kim JY, Lee JY, Lee IK, Yun BS, Rhee MH, Cho JH. 2008. Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW264.7 cells. British J Pharmacol 154: 852-863. 
  17. Lee YY,Ham HM, Park HH , Kim YK, Mi-Ja Lee MJ,Han OK, Kim YH, Park HM, Lee BW, Park JY, 2016. The physicochemical properties and dietary fiber contents in naked and hulled Korean oat cultivar. Korean J Breed Sci 48:37-47. 
  18. Min GJ, Yun BS, Kang HW. 2020. Comparison of anti-oxidant activities and polyphenolic compounds of extracts from artificially cultivated Sanghwang mushroom species, Phellinus linteus and P. baumii. J Mushrooms 18:29-36. 
  19. Min GJ, Kang HW. 2021. Artificial cultivation characteristics and bioactive effects of novel Tropicoporus linteus (Syn. Phellinus linteus) strains HN00K9 and HN6036 in Korea. Mycobiology 49: 161-172. 
  20. Peterson DM, Hahn MJ, Emmons CL. 2002. Oat avenanthramides exhit antioxidant activities in vitro. Food Chem 79: 473-478. 
  21. Yang Z, Xie Chong, Bao Yulong, Liu F, Wang H. 2023.. Oat: Current state and challenges in plant-based food applications. Trand in Food Sci Technol 134: 56-71. 
  22. Varma P. 2016. Oats: A multi‑functional grain. J Clin Prev Cardio 5:9-17. 
  23. Zhu T, Kim SH, Chen CY. A.2008. medicinal mushroom: Phellinus linteus. Curr Med Chem 15:1330-1335.