Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. RS-2022000144399).
References
- Y.S. Chang, M.J. Jung, B.S. Lee, H.S. Kim, N.S. Huh, Structural integrity of nuclear components, Hanshouse (2013) 30-32.
- S. Hong, K.D. Min, S.M. Hyun, J.M. Kim, Y.S. Lee, H.D. Kim, M.C. Kim, Effect of cooling rate on mechanical properties of SA508 Gr.1A steels for main steam line piping in nuclear power plants, Int. J. Pres. Ves. Pip. 191 (2021) 104359, https://doi.org/10.1016/j.ijpvp.2021.104359.
- M.W. Kim, Y.S. Lee, I.W. Shin, J.S. Yang, H.D. Kim, Leak-before-break assessment margin analysis of improved SA508-Gr.1a pipe material, Trans. of the KPVP. 16 (2020) 42-48, https://doi.org/10.20466/KPVP.2020.16.1.042.
- P. Dillstrom, W. Zang, ProLBB-A Probabilistic Approach to LeakBefore Break Demonstration, SKI Report 2007:43, Swedish Nuclear Inspection Authority (SKI), Stockholm, 2007, p. 183.
- B.S. Lee, M.C. Kim, J.H. Yoon, J.H. Hong, Characterization of high strength and high toughness Ni-Mo-Cr low alloy steels for nuclear application, Int. J. Pres. Ves. Pip. 87 (2010) 74-80, https://doi.org/10.1016/j.ijpvp.2009.11.001.
- K.H. Lee, S.G. Park, M.C. Kim, B.S. Lee, D.M. Wee, Characterization of transition behavior in SA508 Gr.4N Ni-Cr-Mo low alloy steels with microstructural alteration by Ni and Cr contents, Mater. Sci. Eng. 529 (2011) 156-163, https://doi.org/10.1016/j.msea.2011.09.012.
- M.C. Kim, S.G. Park, K.H. Lee, B.S. Lee, Comparison of fracture properties in SA508 Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials, Int. J. Pres. Ves. Pip. 131 (2015) 60-66, https://doi.org/10.1016/j.ijpvp.2015.04.010.
- K.H. Lee, M.C. Kim, W.J. Yang, B.S. Lee, Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn-Mo-Ni low alloy steels, Mater. Sci. Eng. 565 (2013) 158-164, https://doi.org/10.1016/j.msea.2012.12.024.
- M.C. Kim, B.S. Lee, W.J. Yang, J.H. Hong, Determination of the key microstructural parameter for the cleavage fracture toughness of reactor pressure vessel steels in the transition region, Key Eng. Mater. 297-300 (2005) 1672-1677. https://doi.org/10.4028/www.scientific.net/KEM.297-300.1672.
- S. Hong, C.L. Lee, M.C. Kim, B.S. Lee, Effects of microstructure variation on tensile and Charpy impact properties in heavy-section SA508 Gr.3 low alloy steels for commercial reactor pressure vessel, Korean J. Met. Mater 55 (2017) 752-759, https://doi.org/10.3365/KJMM.2017.55.11.752.
- S.M. Hyun, S.M. Hong, M.C. Kim, J.M. Kim, S.S. Sohn, Effect of intercritical heat treatment on J-R fracture resistance of SA508 Gr.1A low-alloy steels, Met. Mater. Int. 28 (2022) 2907-2918, https://doi.org/10.1007/s12540-022-01188-7.
- ASTM A508/A508M-16. Standard Specification for Quenched and Tempered Vacuum-Treated Carbon and Alloy Steel Forgings for Pressure Vessels, ASTM International, West Conshohocken, PA, 2016.
- H.C. Lee, K. SShin, S.H. Lee, B.J. Lee, Development of Advanced Low Alloy Steel for Nuclear RPV, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of), 2000, pp. 1-159. KAERI/CM-378/99.
- H.C. Lee, S.H. Lee, Y.M. Ku, B.J. Lee, Strength and Toughness Improvement of Low-Alloy Steel for Nuclear Applications, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of), 2002, pp. 1-127. KAERI/CM-537/2001.
- S.M. Hong, S.M. Hyun, J.M. Kim, Y.S. Lee, M.C. Kim, Effect of Mo and V addition on microstructure and mechanical properties of SA508 Gr.1A steel for pipeline in nuclear power plants, Metall. Mater. Trans. 53A (2022) 1499-1511, https://doi.org/10.1007/s11661-022-06616-2.
- S.M. Hyun, S.M. Hong, M.C. Kim, J.M. Kim, S.S. Sohn, S.I. Hong, Microstructural changes by controlling austenitizing and tempering conditions on the J-R fracture resistance of SA508 Gr. 1A low alloy steels, Mater. Sci. Eng. 811 (2021) 141069, https://doi.org/10.1016/j.msea.2021.141069.
- J.H. Hong, Neutron irradiation effect and integrity of nuclear reactor pressure vessel, kor, J. Mater. Res. 33 (1993) 393-404.
- S.L. Lee, et al., The estimation of neutron fluence in nuclear reactor vessel materials by the analysis of ultrasonic characteristics, J. Korean Soc. Nondestruc. Test. 21 (2001) 307-312.
- B.C. Hwang, Continuous cooling transformation, microstructure and mechanical properties of high-strength low-alloy steels containing B and Cu, Kor. J. Mater. Res. 23 (2013) 525-530.
- ASTM A370-23. Standard Test Methods and Definitions for Mechanical Testing of Steel Products, ASTM International, West Conshohocken, PA, 2023.
- ASTM E23-23a. Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2023.
- W. Oldfield, ASTM Stand. News 3 (1975) 24.
- ASTM E1820-23b. Standard Test Method for Measurement of Fracture Toughness, ASTM International, West Conshohocken, PA, 2023.
- S.M. Hong, S.Y. Shin, J.H. Lee, C.H. Lee, S.H. Lee, Effect of phosphorous and boron addition on microstructural evolution and Charpy impact properties of high-phosphorous-containing plain carbon steels, Mater. Sci. Eng. 564 (2013) 461-472, https://doi.org/10.1016/j.msea.2012.11.102.
- S.M. Hong, J.H. Lee, K.S. Park, S.H. Lee, Effects of boron addition on tensile and Charpy impact properties in high-phosphorous steels, Mater. Sci. Eng. 589 (2014) 165-173, https://doi.org/10.1016/j.msea.2013.09.095.
- X.L. He, Y.Y. Chu, J.J. Jonas, The grain boundary segregation of boron during isothermal holding, Acta Metall. 37 (1989) 2905-2916.
- X.L. He, Y.Y. Chu, J.J. Jonas, Grain boundary segregation of boron during continuous cooling, Acta Metall. 37 (1989) 147-161.
- B. Hwang, C. Lee, T.-H. Lee, Correlation of microstructure and mechanical properties of thermomechanically processed low-carbon steels containing boron and copper, Metall. Mater. Trans. 41A (2010) 85-96, https://doi.org/10.1007/s11661-009-0070-4.
- J.B. Seol, N.S. Lim, B.H. Lee, L. Renaud, C.G. Park, Atom probe tomography and nano secondary ion mass spectroscopy investigation of the segregation of boron at austenite grain boundaries in 0.5 wt.% carbon steels, Met. Mater. Int. 17 (2011) 413-416, https://doi.org/10.1007/s12540-011-0617-y.
- S.I. Kim, Y. Lee, Influence of cooling rate and boron content on the microstructure and mechanical properties of hot-rolled high strength interstitial-free steels, Met. Mater. Int. 18 (2012) 735-744, https://doi.org/10.1007/s12540-012-5001-z.
- Z.H. Zhao, W.C. Chen, H. Yuan, Y. D, Li, Effect of Boron on Grain Size of Low Carbon Steel, vol. 3, 2006, pp. 67-70.
- Jieyi Wang, Thermal-Physical Simulation of Q345E Large H-Section Steel Treated with Boron and Boron Nickel, Master's thesis Shandong University, 2010.
- Xuejing Fu, Chun Xu, Continuous-cooling-transformation diagrams for boron-low carbon micro alloy hot rolled enamel steel, J. Phys.: Conf. Ser. 2435 (2023) 012014, https://doi.org/10.1088/1742-6596/2435/1/012014.
- S.S. Babu, G.M. Goodwin, R.J. Rohde, B. Sielen, Effect of boron on the microstructure of low-carbon steel resistance seam welds, Weld. Res. Suppl. 77 (1998) 249-253.
- H.K.D.H. Bhadeshia, L.E. Svensson, Model for boron effects in steel welds, in: Int. Conf. Model. Control Join. Process, 1993, pp. 153-160.
- S.Y. Lee, J.Y. Kim, B.C. Hwang, Recrystallization behavior in the two-phase (α+γ) region of micro-alloyed steels, Korean J. Mater. Res. 26 (2016) 583-589, https://doi.org/10.3740/MRSK.2016.26.11.583.
- U.Y. Huh, Y.S. Rho, M.S. Choi, Y.H. Kim, S.Y. Lee, Study on the effect of austenite grain size and Mn content on hardenability in boron-added low carbon alloys steels, J. of the Korean Society for Heat Treatment 3 (1990) 23-40.
- J.Y. Son, B.C. Park, H. Sung, Y.S. Kim, The effect of microstructure and mechanical property with heat treatment condition in boron-treated low carbon low alloy steel, Proc. of Trans. Mater. Process. 10a (2007) 146-149.
- H.K.D.H. Bhadeshia, R.W.K. Honeycombe, Steels: Microstructure and Properties, third ed., Elsevier Ltd., 2006.
- T.W. Hong, S.I. Lee, J.H. Shim, J.H. Lee, M.G. Lee, B.C. Hwang, Effect of microstructural factors on the strength and deformability of ferrite-pearlite steels with different Mn and V contents, Korean J. Mater. 28 (2018) 570-577, https://doi.org/10.3740/MRSK.2018.28.10.570.
- S.C. Wang, P.W. Kao, The effect of alloying elements on the structure and mechanical properties of ultra low carbon bainitic steels, J. Mater. Sci. 28 (1993) 5169-5175, https://doi.org/10.1007/BF00570058.
- R. Rodriguez-Galeano, Karol Felipe Rodriguez-Baracaldo, A. Mestra-Rodriguez, J. J. Cabrera-Marrero, Jose Maria Olaya-Florez, Influence of boron content on the fracture toughness and fatigue crack propagation kinetics of bainitic steels, Theor. Appl. Fract. Mech. 86 (2016) 351-360. https://doi:10.1016/j.tafmec.2016.09.0104.
- R.J. Klassen, M.N. Bassim, M.R. Bayoumi, H.G.F. Wilsdorf, Characterization of the effect of alloying elements on the fracture toughness of high strength, low alloy steels, Mater. Sci. 80 (1986) 25-35, https://doi.org/10.1016/0025-5416(86)90299-5.
- V. Kumar, Elastic-Plastic Fracture Analysis of through-Wall and Surfaces Flaw in Cylinders, Electric Power Research Institute (EPRI), 1988.
- K.D. Bae, H.W. Ryu, Y.J. Kim, J.W. Kim, J.S. Kim, Y.J. Oh, Determination method of ramberg-osgood constants for leak before break evaluation, Trans. Korean Soc. Mech. Eng. A 39 (2015) 645-652, https://doi.org/10.3795/KSMEA.2015.39.7.645.
- Y.J. Kim, N.S. Huh, Y.J. Kim, Y.H. Choi, J.S. Yang, On relevant ramberg-osgood fit to engineering non-linear fracture mechanics analysis, Trans. Korean Soc. Mech. Eng. A 27 (2003) 1571-1578.
- D.M. Norris, B. Chexal, PICEP: Pipe Crack Evaluation Program (Revision 1): Special Report: EPRI-NP-3596-SR-Rev. 1[R], EPRI, Palo Alto, 1987.
- J.G. Park, N.S. Huh, Y.J. Kim, S.M. Lee, Development of elastic-plastic fracture mechanics evaluation program for leak-before-break analysis of nuclear piping, Trans. of the KPVP. 16 (2020) 35-46, https://doi.org/10.20466/KPVP.2020.16.2.035.
- S. Hong, J. Kim, M.W. Kim, H.D. Kim, B.S. Lee, M.C. Kim, Evaluation of LBB characteristics of candidate materials for main steam line piping in Korea nuclear power plants, Int. J. Pres. Ves. Pip. 188 (2020) 104226, https://doi.org/10.1016/j.ijpvp.2020.104226.