DOI QR코드

DOI QR Code

Comparative analysis of modeling approaches for sulfide-induced corrosion of copper disposal canisters in a 3-dimensional domain

  • Heejae Ju (Korea Atomic Energy Research Institute) ;
  • Nakkyu Chae (Department of Nuclear Engineering, Seoul National University) ;
  • Jung-Woo Kim (Korea Atomic Energy Research Institute) ;
  • Hong Jang (Korea Atomic Energy Research Institute) ;
  • Sungyeol Choi (Department of Nuclear Engineering, Seoul National University)
  • Received : 2023.12.12
  • Accepted : 2024.03.27
  • Published : 2024.08.25

Abstract

Copper canisters are commonly employed to contain HLW for the long-term, making it crucial to understand how corrosion affects the canister. This study conducted a comparative analysis of two widely used calculation methods for modeling canister corrosion within a 3-D DGR domain. The first method, termed transport-limited corrosion, assumes an immediate sulfide-copper reaction and has been traditionally used due to its conservative nature. The second method, known as the potential-limited corrosion, considers coupled redox reactions at the canister surface and computes corrosion rates through anodic current density. From the results, we found that the edge of the canister geometry and the omission of electrochemical kinetics impose critical limitations with the transport-limited corrosion method. These limitations include the singularity problem, excessive sensitivity to the curvature of the canister's edge, and an inability to evaluate the distribution of corrosion rate over the canister surface as a function of the sulfide concentration. On the other hand, the potential-limited corrosion method avoided the limitations found in the other method. Since the factors relating to these limitations are critical to the design and optimization of the copper disposal canister, careful consideration when selecting appropriate calculation methods for corrosion will be required.

Keywords

Acknowledgement

This work was supported by the Institute for Korea Spent Nuclear Fuel (iKSNF) and National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT, MSIT) (NRF-2021M2E1A1085185).

References

  1. J. Lee, I. Kim, H. Ju, H. Choi, D. Cho, Proposal of an improved concept design for the deep geological disposal system of spent nuclear fuel in Korea, Journal of Nuclear Fuel Cycle and Waste Technology S (1) (2020) 1-19.
  2. SKB, Design, Production and Initial State of the Canister. SKB TR-10-14, SKB, Stockholm, 2010.
  3. NWMO, Postclosure Safety Assessment of a Used Fuel Repository in Crystalline Rock. NWMO TR-2017-02, NWMO, Toronto, 2017.
  4. Posiva, Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Description of the Disposal System 2012. POSIVA 2012-05, Posiva OY, Olkiluoto, 2012.
  5. P.G. Keech, M. Behazin, J.W. Binns, S. Briggs, An update on the copper corrosion program for the long-term management of used nuclear fuel in Canada, Mater. Corros. 72 (1-2) (2020) 25-31.
  6. F. King, C. Lilja, K. Pedersen, P. Pitkanen, M. Vahanen, An Update of the State-Of-The-Art Report on the Corrosion of Copper under Expected Conditions in a Deep Geologic Repository. TR-10-67, SKB, Stockholm, 2010.
  7. European Commision, State of the Art Document on the Corrosion Behaviour of Container Materials. COBECOMA, EC, 2004.
  8. D.S. Hall, M. Behazin, W.J. Binns, P.G. Keech, An evaluation of corrosion processes affecting copper-coated nuclear waste containers in a deep geological repository, Prog. Mater. Sci. 118 (2021).
  9. S. Briggs, C. Lilja, F. King, Probabilistic model for pitting of copper canisters, Mater. Corros. 72 (2021) 308-316.
  10. N. Chae, S. Park, S. Seo, R.I. Foster, H. Ju, S. Choi, Coupled mixed-potential and thermal-hydraulics model for long-term corrosion of copper canisters in deep geological repository, Materials Degradation 26 (2023).
  11. T.H. Yun, T. Kim, S. Kim, J. Kim, Investigation of corrosion behavior of oxygen-free copper canisters in groundwater chemistry of deep geological repositories, Materials 17 (1) (2024) 74.
  12. J. Ma, M. Pekala, P. Alt-Epping, B. Pastina, S. Maanoja, 3D modelling of long-term sulfide corrosion of copper canisters in a spent nuclear fuel repository, Appl. Geochem. 146 (2022).
  13. F. King, M. Kolar, Copper Sulfide Model (CSM) Model Improvements, Sensitivity Analyses and Results from the Integrated Project Inter-model Comparison. TR-18-08, SKB, Stockholm, 2019.
  14. F. King, S.R. Ryan, C.D. Litke, The Corrosion of Copper in Compacted Clay. AECL11831, Atomic Energy of Canada Limited, 1997.
  15. F. Grandia, K. Domenech, D. Arcos, L. Duro, Assessment of the Oxygen Consumption in the Backfill. Geochemical Modeling in a Saturated Backfill. SKB R-06-106, SKB, Stockholm, 2003.
  16. J. Smith, Z. Qin, F. King, L. Werme, D. Shoesmith, Sulfide film formation on copper under electrochemical and natural corrosion conditions, Corrosion 63 (2) (2007) 135-144.
  17. F. King, J. Chen, Z. Qin, D. Shoesmith, C. Lilja, Sulphide-transport control of the corrosion of copper canister, Corrosion Eng. Sci. Technol. 52 (S1) (2017) 210-216.
  18. I. Puigdomenech, C. Taxen, Thermodynamic Data for Copper. Implications for the Corrosion of Copper under Repository Conditions. SKB TR-00-13, SKB, Stockholm, 2000.
  19. F. King, M. Kolar, I. Puigdomenech, P. Pitkanen, C. Lilja, Modeling microbial sulfate reduction and the consequences for corrosion of copper canisters, Mater. Corros. 72 (1-2) (2020) 339-347.
  20. S. Briggs, J. McKelvie, B. Sleep, M. Krol, Multi-dimensional transport modelling of corrosive agents through a bentonite buffer in a Canadian deep geological repository, Sci. Total Environ. 599-600 (2017) 348-354.
  21. Y. Hwang, Copper canister lifetime limited by a sulfide intrusion in a deep geological repository, Prog. Nucl. Energy 51 (2009) 695-700.
  22. N. Diomidis, L.H. Johnson, P. Bastid, C. Aleen, Design development of a copper-coated canister for the disposal of spent fuel in a deep geological repository in Opalinus Clay, Corrosion Eng. Sci. Technol. 52 (S1) (2017) 31-39.
  23. F. King, S. Stroes-Gascoyne, Predicting the Effects of Microbial Activity on the Corrosion of Copper Nuclear Fuel Waste Disposal Containers. AECL-11598, AECL, 1996.
  24. I. Neretnieks, Stationary transport of dissolved species in the backfill surrounding a waste canister in fissured rock: some simple analytical solutions, Nucl. Technol. 72 (2) (1986).
  25. L. Werme, P. Sellin, N. Kjellbert, Copper Canisters for Nuclear High Level Waste Disposal. Corrosion Aspects, SKB, Stockholm, 1992.
  26. J. Ma, P. Alt-Epping, B. Pastina, M. Niskanen, T. Salonen, P. Wersin, Development of a 2D model for rapid estimation of sulfide corrosion of copper canisters in a spent nuclear fuel repository, Mater. Corros. 74 (2023) 1823-1833.
  27. M. Moinuddin, Comsol Modelling of Uniform Corrosion of Used Nuclear Fuel Canisters [Master's Thesis, York University], York University, 2017.
  28. Z.C. Li, T. Lu, Singularities and treatments of elliptic boundary value problems, Math. Comput. Model. 31 (8-9) (2000) 97-154.
  29. V.A. Rukavishnikov, E.I. Rukavishnikova, On the dirichlet problem with corner singularity, Mathematics 8 (11) (2020).
  30. R. Balijepalli, M. Begley, N. Fleck, R. McMeeking, E. Arzt, Numerical simulation of the edge stress singularity and the adhension strength for compliant mushroom fibrils adhered to rigid substrates, International Journal of Soilds and Structures 85-56 (2016) 160-171.
  31. J. Whitcomb, I. Raju, J. Goree, Reliability of the finited element method for calculating free edge stresses in composite laninates, Comput. Struct. 15 (1) (1982) 23-37.
  32. P. Tong, T.H. Pian, On the convergence of the finite element method for problems with singularity, International Journal of Soilds and Structures 9 (3) (1973) 313-321.
  33. J.-W. Kim, H. Jang, D.H. Lee, H.H. Cho, J. Lee, M. Kim, H. Ju, A modularized numerical framework for the process-based total system performance assessment of geological disposal systems, Nucl. Eng. Technol. 54 (8) (2022) 2828-2839.
  34. F. King, Mixed-potential Modeling of the Corrosion of Copper in the Presence of Sulphide. POSIVA WR 2007-63, Posiva Oy, Olkiluoto, 2008.
  35. J. Chen, Z. Qin, D. Shoesmith, Kinetics of corrosion film growth on copper in neutral chloride solutions containing small concentrations of sulfide, J. Electrochem. Soc. 157 (10) (2010) C338-C345.
  36. C. Lee, J. Lee, S. Park, S. Kwon, W.-J. Cho, G.Y. Kim, Numerical analysis of coupled thermo-hydro-mechanical behavior in single- and multi-layer repository concepts for high-level radioactive waste disposal, Tunn. Undergr. Space Technol. 103 (103452) (2020) 1-17.
  37. J. Lee, J.-W. Kim, Development of Radionuclide Transport Model Considering Long-Term Thermal-Hydrualic-Mechanical Evolution in Excavation Damaged Zone. KAERI/TR-9405-2022 (Korean), KAERI, 2022.