DOI QR코드

DOI QR Code

A robust nano-indentation modeling method for ion-irradiated FCC single crystals using strain-gradient crystal plasticity theory and particle swarm optimization algorithm

  • Van-Thanh Pham (Department of Quantum and Nuclear Engineering, Sejong University) ;
  • Jong-Sung Kim (Department of Quantum and Nuclear Engineering, Sejong University)
  • Received : 2024.02.20
  • Accepted : 2024.03.24
  • Published : 2024.08.25

Abstract

Addressing the challenge of identifying an appropriate set of material and irradiation parameters for accurate simulation models using crystal plasticity finite element method (CPFEM), this study proposes a novel two-stage method for nano-indentation modeling of ion-irradiated face-centered cubic (FCC) materials. It includes implementing the strain-gradient crystal plasticity (SGCP) theory with irradiation effects and the calibration of simulation parameters using the particle swarm optimization (PSO) algorithm with experimental data. The proposed method consists of two stages: establishing CPFEM without irradiation effects in stage 1 and modeling irradiation effects based on CPFEM in stage 2. Modeling the nano-indentation test of ion-irradiated stainless steel 304 (SS304) using real experimental data is conducted to evaluate the efficiency of the proposed method. The accuracy of the calibration method using PSO is verified through comparisons between simulation and experimental results for force-indentation depth and hardness-indentation depth relationships under both unirradiated and irradiated conditions. Moreover, effect of ion-irradiation on the mechanical behavior during the nano-indentation of single crystal SS304 is also examined to demonstrate that the proposed method is a powerful approach for nano-indentation modeling of ion-irradiated FCC single crystals using SGCP theory and the PSO algorithm.

Keywords

Acknowledgement

This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korean government (MOTIE) (No.20222B10100040, The development of manufacturing technology for the 5M plates with lightweight and neutron absorption composite materials for the purpose of the storage and transport of spent nuclear fuels).

References

  1. Y. Cui, G. Po, N.M. Ghoniem, A coupled dislocation dynamics-continuum barrier field model with application to irradiated materials, Int. J. Plast. 104 (2018) 54-67, https://doi.org/10.1016/j.ijplas.2018.01.015. 
  2. M. Saleh, Z. Zaidi, M. Ionescu, C. Hurt, K. Short, J. Daniels, P. Munroe, L. Edwards, D. Bhattacharyya, Relationship between damage and hardness profiles in ion irradiated SS316 using nanoindentation - experiments and modelling, Int. J. Plast. 86 (2016) 151-169, https://doi.org/10.1016/j.ijplas.2016.08.006. 
  3. D.H. Kwak, J.M. Sim, Y.S. Chang, B.S. Kong, C. Jang, Multiscale simulations for estimating mechanical properties of ion irradiated 308 based on microstructural features, Nucl. Eng. Technol. 55 (2023) 2823-2834, https://doi.org/10.1016/j.net.2023.05.011. 
  4. J. Nie, Y. Liu, Q. Xie, Z. Liu, Study on the irradiation effect of mechanical properties of RPV steels using crystal plasticity model, Nucl. Eng. Technol. 51 (2019) 501-509, https://doi.org/10.1016/j.net.2018.10.020. 
  5. X. Xiao, L. Yu, A hardening model for the cross-sectional nanoindentation of ion-irradiated materials, J. Nucl. Mater. 511 (2018) 220-230, https://doi.org/10.1016/j.jnucmat.2018.09.019. 
  6. X. Xiao, L. Yu, Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials, J. Nucl. Mater. 503 (2018) 110-115, https://doi.org/10.1016/j.jnucmat.2018.02.047. 
  7. A. Lupinacci, K. Chen, Y. Li, M. Kunz, Z. Jiao, G.S. Was, M.D. Abad, A.M. Minor, P. Hosemann, Characterization of ion beam irradiated 304 stainless steel utilizing nanoindentation and Laue microdiffraction, J. Nucl. Mater. 458 (2015) 70-76, https://doi.org/10.1016/j.jnucmat.2014.11.050. 
  8. P. Hosemann, Small-scale mechanical testing on nuclear materials: bridging the experimental length-scale gap, Scr. Mater. 143 (2018) 161-168, https://doi.org/10.1016/j.scriptamat.2017.04.026. 
  9. K. Liu, X. Long, B. Li, X. Xiao, C. Jiang, A hardening model considering grain size effect for ion-irradiated polycrystals under nanoindentation, Nucl. Eng. Technol. 53 (2021) 2960-2967, https://doi.org/10.1016/j.net.2021.03.007. 
  10. H. Vo, A. Reichardt, C. Howard, M.D. Abad, D. Kaoumi, P. Chou, P. Hosemann, Small-Scale mechanical testing on proton beam-irradiated 304 SS from room temperature to reactor operation temperature, Jom 67 (2015) 2959-2964, https://doi.org/10.1007/s11837-015-1596-0. 
  11. W.Q. Chen, X.Y. Wang, X.Z. Xiao, S.L. Qu, Y.Z. Jia, W. Cui, X.Z. Cao, B. Xu, W. Liu, Characterization of dose dependent mechanical properties in helium implanted tungsten, J. Nucl. Mater. 509 (2018) 260-266, https://doi.org/10.1016/j.jnucmat.2018.07.004. 
  12. A. Reichardt, A. Lupinacci, D. Frazer, N. Bailey, H. Vo, C. Howard, Z. Jiao, A. M. Minor, P. Chou, P. Hosemann, Nanoindentation and in situ microcompression in different dose regimes of proton beam irradiated 304 SS, J. Nucl. Mater. 486 (2017) 323-331, https://doi.org/10.1016/j.jnucmat.2017.01.036. 
  13. C. Heintze, F. Bergner, S. Akhmadaliev, E. Altstadt, Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening, J. Nucl. Mater. 472 (2016) 196-205, https://doi.org/10.1016/j.jnucmat.2015.07.023. 
  14. V.H. Truong, S.E. Kim, An efficient method of system reliability analysis of steel cable-stayed bridges, Adv. Eng. Software 114 (2017) 295-311, https://doi.org/10.1016/j.advengsoft.2017.07.011. 
  15. V.T. Bui, Q.V. Vu, V.H. Truong, S.E. Kim, Fully nonlinear inelastic analysis of rectangular CFST frames with semi - rigid connections, Steel Compos. Struct. 38 (2021) 497-521, https://doi.org/10.12989/scs.2021.38.5.497. 
  16. F.-L. Zhang, D.-K. Gu, X. Li, X.-W. Ye, H. Peng, Structural damage detection based on fundamental Bayesian two-stage model considering the modal parameters uncertainty, Struct. Health Monit. 22 (2023) 2305-2324, https://doi.org/10.1177/14759217221114262. 
  17. G.H. Al-Malkawi, A.M.B.A. Al-Ajlony, K.F. Al-Shboul, A. Hassanein, New Monte-Carlo based simulation program suitable for low-energy ions irradiation in pure materials, Nucl. Eng. Technol. 55 (2023) 1287-1299, https://doi.org/10.1016/j.net.2022.12.007.
  18. S. Ha, J.H. Jang, K.T. Kim, Finite element implementation of dislocation-density-based crystal plasticity model and its application to pure aluminum crystalline materials, Int. J. Mech. Sci. 120 (2017) 249-262, https://doi.org/10.1016/j.ijmecsci.2016.11.011. 
  19. E. Renner, Y. Gaillard, F. Richard, F. Amiot, P. Delobelle, Sensitivity of the residual topography to single crystal plasticity parameters in Berkovich nanoindentation on FCC nickel, Int. J. Plast. 77 (2016) 118-140, https://doi.org/10.1016/j.ijplas.2015.10.002. 
  20. Y. Zhang, H. Wang, X. Li, H. Tang, A.A. Polycarpou, A finite element correction method for sub-20 nm nanoindentation considering tip bluntness, Int. J. Solid Struct. 129 (2017) 49-60, https://doi.org/10.1016/j.ijsolstr.2017.09.015. 
  21. J. Nie, P. Lin, Y. Liu, H. Zhang, X. Wang, Simulation of the irradiation effect on hardness of Chinese HTGR A508-3 steels with CPFEM, Nucl. Eng. Technol. 51 (2019) 1970-1977, https://doi.org/10.1016/j.net.2019.06.015. 
  22. X. Xiao, L. Chen, L. Yu, H. Duan, Modelling nano-indentation of ion-irradiated FCC single crystals by strain-gradient crystal plasticity theory, Int. J. Plast. 116 (2019) 216-231, https://doi.org/10.1016/j.ijplas.2019.01.005. 
  23. M.E. Gurtin, N. Ohno, A gradient theory of small-deformation, single-crystal plasticity that accounts for GND-induced interactions between slip systems, J. Mech. Phys. Solid. 59 (2011) 320-343, https://doi.org/10.1016/j.jmps.2010.10.005. 
  24. E. Bittencourt, On the effects of hardening models and lattice rotations in strain gradient crystal plasticity simulations, Int. J. Plast. 108 (2018) 169-185, https://doi.org/10.1016/j.ijplas.2018.05.004. 
  25. M. Zaiser, P. Moretti, H. Chu, Stochastic crystal plasticity models with internal variables: application to slip channel formation in irradiated metals, Adv. Eng. Mater. 22 (2020), https://doi.org/10.1002/adem.201901208. 
  26. N.R. Barton, A. Arsenlis, J. Marian, A polycrystal plasticity model of strain localization in irradiated iron, J. Mech. Phys. Solid. 61 (2013) 341-351, https://doi.org/10.1016/j.jmps.2012.10.009. 
  27. C. Hardie, R. Thomas, Y. Liu, P. Frankel, F. Dunne, Simulation of crystal plasticity in irradiated metals: a case study on Zircaloy-4, Acta Mater. 241 (2022) 118361, https://doi.org/10.1016/j.actamat.2022.118361. 
  28. C.S. Han, H. Gao, Y. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity - II. Analysis, J. Mech. Phys. Solid. 53 (2005) 1204-1222, https://doi.org/10.1016/j.jmps.2005.01.004. 
  29. C.S. Han, H. Gao, Y. Huang, W.D. Nix, Mechanism-based strain gradient crystal plasticity - I, Theory, J. Mech. Phys. Solids 53 (2005) 1188-1203, https://doi.org/10.1016/j.jmps.2004.08.008. 
  30. X. Xiao, L. Yu, Cross-sectional nano-indentation of ion-irradiated steels: finite element simulations based on the strain-gradient crystal plasticity theory, Int. J. Eng. Sci. 143 (2019) 56-72, https://doi.org/10.1016/j.ijengsci.2019.06.015. 
  31. K. Sedighiani, M. Diehl, K. Traka, F. Roters, J. Sietsma, D. Raabe, An efficient and robust approach to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves, Int. J. Plast. 134 (2020) 102779, https://doi.org/10.1016/j.ijplas.2020.102779. 
  32. X. Xiao, L. Yu, Nano-indentation of ion-irradiated nuclear structural materials: a review, Nucl. Mater. Energy. 22 (2020) 100721, https://doi.org/10.1016/j.nme.2019.100721. 
  33. F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications, Acta Mater. 58 (2010) 1152-1211, https://doi.org/10.1016/j.actamat.2009.10.058. 
  34. M. Bertin, C. Du, J.P.M. Hoefnagels, F. Hild, Crystal plasticity parameter identification with 3D measurements and integrated digital image correlation, Acta Mater. 116 (2016) 321-331, https://doi.org/10.1016/j.actamat.2016.06.039. 
  35. M. Saleh, A. Xu, C. Hurt, M. Ionescu, J. Daniels, P. Munroe, L. Edwards, D. Bhattacharyya, Oblique cross-section nanoindentation for determining the hardness change in ion-irradiated steel, Int. J. Plast. 112 (2019) 242-256, https://doi.org/10.1016/j.ijplas.2018.08.015. 
  36. C.K.S. Moy, M. Bocciarelli, S.P. Ringer, G. Ranzi, Identification of the material properties of Al 2024 alloy by means of inverse analysis and indentation tests, Mater. Sci. Eng. 529 (2011) 119-130, https://doi.org/10.1016/j.msea.2011.09.005. 
  37. C. Heinrich, A.M. Waas, A.S. Wineman, Determination of material properties using nanoindentation and multiple indenter tips, Int. J. Solid Struct. 46 (2009) 364-376, https://doi.org/10.1016/j.ijsolstr.2008.08.042. 
  38. G. Sun, E. Wang, T. Zhao, G. Zheng, Q. Li, Inverse identification of cell-wall material properties of closed-cell aluminum foams based upon Vickers nanoindentation tests, Int. J. Mech. Sci. 176 (2020) 105524, https://doi.org/10.1016/j.ijmecsci.2020.105524. 
  39. M. Sun, L. Yu, X. Xiao, Model for irradiation softening of nickel-based single crystal superalloys under ion irradiation, J. Mater. Res. Technol. 22 (2023) 3101-3107, https://doi.org/10.1016/j.jmrt.2022.12.122. 
  40. J. Nocedal, S.J. Wright, Numerical optimization, in: Springer Ser. Oper. Res. Financ. Eng., 2006, pp. 1-664. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85098056778&partnerID=40&md5=df1c8d8ac01f8cb6ee9e5b86ab38c370. 
  41. M. Smith, ABAQUS/Standard user's manual, version 6.9. https://api.semanticscholar.org/CorpusID:63419830, 2009. 
  42. R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: MHS'95. Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., Ieee, 1995, pp. 39-43. 
  43. R. Hill, Generalized constitutive relations for incremental deformation of metal crystals by multislip, J. Mech. Phys. Solid. 14 (1966) 95-102, https://doi.org/10.1016/0022-5096(66)90040-8. 
  44. R. Hill, J.R. Rice, Constitutive analysis of elastic-plastic crystals at arbitrary strain, J. Mech. Phys. Solid. 20 (1972) 401-413, https://doi.org/10.1016/0022-5096(72)90017-8. 
  45. U.F. Kocks, Superposition of alloy hardening, in: Strain Hardening, and Dynamic Recovery, Pergamon Press Ltd, 1980, https://doi.org/10.1016/b978-1-4832-8412-5.50250-2. 
  46. W.B. Lee, Y.P. Chen, Simulation of micro-indentation hardness of FCC single crystals by mechanism-based strain gradient crystal plasticity, Int. J. Plast. 26 (2010) 1527-1540, https://doi.org/10.1016/j.ijplas.2010.01.011. 
  47. J. Nie, Y. Liu, P. Lin, Q. Xie, Z. Liu, A crystal plasticity model with irradiation effect for the mechanical behavior of FCC metals, Acta Mech. Solida Sin. 32 (2019) 675-687, https://doi.org/10.1007/s10338-019-00145-z. 
  48. M. Hajihassani, D.J. Armaghani, R. Kalatehjari, Applications of particle swarm optimization in geotechnical engineering: a comprehensive review, Geotech. Geol. Eng. 36 (2018) 705-722. 
  49. Y. Wang, D. Raabe, C. Kluber, F. Roters, Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals, Acta Mater. 52 (2004) 2229-2238, https://doi.org/10.1016/j.actamat.2004.01.016. 
  50. H.M. Ledbetter, Predicted monocrystal elastic constants of 304-type stainless steel, Phys. B+C 128 (1985) 1-4, https://doi.org/10.1016/0378-4363(85)90076-2. 
  51. T.S. Byun, N. Hashimoto, K. Farrell, E.H. Lee, Characteristics of microscopic strain localization in irradiated 316 stainless steels and pure vanadium, J. Nucl. Mater. 349 (2006) 251-264, https://doi.org/10.1016/j.jnucmat.2005.10.011. 
  52. M.G. Lee, S.J. Kim, H.N. Han, Crystal plasticity finite element modeling of mechanically induced martensitic transformation (MIMT) in metastable austenite, Int. J. Plast. 26 (2010) 688-710, https://doi.org/10.1016/j.ijplas.2009.10.001. 
  53. M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, R. Schaublin, B.N. Singh, Microstructure and associated tensile properties of irradiated fcc and bcc metals, J. Nucl. Mater. 276 (2000) 114-122, https://doi.org/10.1016/S0022-3115(99)00203-2. 
  54. C. Deo, C. Tom'e, R. Lebensohn, S. Maloy, Modeling and simulation of irradiation hardening in structural ferritic steels for advanced nuclear reactors, J. Nucl. Mater. 377 (2008) 136-140, https://doi.org/10.1016/j.jnucmat.2008.02.064. 
  55. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583. 
  56. O. Casals, J. Ocenasek, J. Alcala, Crystal plasticity finite element simulations of pyramidal indentation in copper single crystals, Acta Mater. 55 (2007) 55-68, https://doi.org/10.1016/j.actamat.2006.07.018. 
  57. X. Gao, S. Wang, Z. Xu, J. Zhou, X. Wan, H.M.A. Rayhan, Y. Lou, Plastic evolution characterization for 304 stainless steel by CQN_Chen model under the proportional loading, Materials 16 (2023), https://doi.org/10.3390/ma16216828.