DOI QR코드

DOI QR Code

Influence of aluminum and vanadium oxides on copper borate glass: A physical/radiological study

  • Islam M. Nabil (Physics Department, Faculty of Science, Fayoum University) ;
  • Moamen G. El-Samrah (Nuclear Engineering Department, Military Technical College (MTC)) ;
  • Mahmoud Y. Zorainy (Chemical Engineering Department, Military Technical College (MTC)) ;
  • H.Y. Zahran (Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University) ;
  • Ahmed T. Mosleh (Nanoscience Laboratory for Environmental and Bio-Medical Applications (NLEBA), Green Research Laboratory (GRL), Faculty of Education, Ain Shams University) ;
  • Ibrahim S. Yahia (Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University)
  • Received : 2024.02.04
  • Accepted : 2024.03.22
  • Published : 2024.08.25

Abstract

Due to the radiation released by commonly used isotopes, many nuclear, medical, and industrial facilities require proper radiation shielding. In this work, distinct copper borate glasses intercalated with varied aluminum and vanadium oxide (Al2O3 and V2O5) content have been synthesized and used against radiation (gamma rays and fast/thermal neutrons). The different percents were as follows: [60% B2O3 + 35% CuO + (5-x)% Al2O3 + xV2O5], where x = 0, 1, and 2.5 wt.%, which was coded as BCu(5-x)Al:xV. The synthesized glass samples were characterized using Fourier transforms, infrared, and X-Raydiffraction analysis. Experimentally, the radiation shielding possessions of the samples were established using an HPGe detector at the gamma energy lines 0.356 MeV, 0.661 MeV, 1.173 MeV, and 1.332 MeV. Also, the prepared glasses were investigated theoretically using the Monte Carlo code (MCNP5) at photon energies of 0.015-15 MeV. Also, the fast and thermal neutron macroscopic effective removal cross-sections were calculated using MRCsC and JANIS-4.1 software, respectively. The prepared sample BCu2.5Al:2.5V, which has a vanadium and aluminum content of 2.5%, has the highest linear attenuation coefficient as well as the highest removal cross-section for fast, and thermal neutrons.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia for funding this work through the large research group program number: R.G.P.2/434/44..

References

  1. I.M. Nabil, Y.Y. Ebaid, S.A. El-Mongy, Natural radionuclides quantification and radiation hazard evaluation of phosphate fertilizers industry: a case study, Physics of Particles and Nuclei Letters 19 (3) (2022) 272-281.
  2. K. Shahzad, et al., Views on radiation shielding efficiency of polymeric composites/ nanocomposites and multi-layered materials: current state and advancements, Radiation 3 (1) (2023) 1-20.
  3. A. Abdelghany, N.A. Alsaif, M. Madshal, H. ElBatal, Y. Rammah, W. Awad, Structural, optical and radiation shielding parameters of sodium aluminium borate glasses modified with chromium oxide, Radiat. Phys. Chem. 207 (2023) 110861.
  4. J. Wang, Focuses of material science development in recent years, Sci. China Technol. Sci. 54 (6) (2011) 1645-1648, https://doi.org/10.1007/s11431-011-4383-3.
  5. Y. Rammah, M. Al-Buriahi, A. Abouhaswa, B2O3-BaCO3-Li2O3 glass system doped with Co3O4: structure, optical, and radiation shielding properties, Phys. B Condens. Matter 576 (2020) 411717.
  6. H. Zhang, et al., Effects of vapor hydration and radiation on the leaching behavior of nuclear glass, J. Nucl. Mater. 578 (2023) 154368, https://doi.org/10.1016/j.jnucmat.2023.154368.
  7. A.A. El-Rehim, A.M. Ali, H. Zahran, I. Yahia, K.S. Shaaban, Spectroscopic, structural, thermal, and mechanical properties of B 2 O 3-CeO 2-PbO 2 glasses, J. Inorg. Organomet. Polym. Mater. 31 (2021) 1774-1786.
  8. S. Al-Obaidi, H. Akyildirim, K. Gunoglu, I. Akkurt, Neutron shielding calculation for barite-boron-water, Acta Phys. Pol. A 137 (4) (2020) 551.
  9. M.G. El-Samrah, M.A. Abdel-Rahman, A.M. Kany, Study characteristics of new concrete mixes and their mechanical, physical, and gamma radiation attenuation features, Z. Anorg. Allg. Chem. 644 (2) (2018) 92-99.
  10. S.M. Malkapur, et al., Waste-polymer incorporated concrete mixes for neutron and gamma radiation shielding, Prog. Nucl. Energy 135 (2021) 103694.
  11. C.F. Drake, J.W.P. Smith, G.H. Wostenholm, B. Yates, The specific heat capacities of copper-borate glasses, J. Non-Cryst. Solids 43 (1) (1981) 17-27, https://doi.org/10.1016/0022-3093(81)90170-8.
  12. M. Eigen, Chapter 12 - oxide glasses, in: K.J. Rao (Ed.), Structural Chemistry of Glasses, Elsevier Science Ltd, Oxford, 2002, pp. 463-511.
  13. J. Wu, et al., Comparative investigation of physical, X-ray and neutron radiation shielding properties for B2O3-MnO2-CdO borate glasses, Ceram. Int. 49 (2023) 30915-30923.
  14. M. Al-Buriahi, Radiation shielding performance of a borate-based glass system doped with bismuth oxide, Radiat. Phys. Chem. 207 (2023) 110875.
  15. N. Tamam, et al., Radiation attenuation of boro-tellurite glasses for efficient shielding applications, Appl. Radiat. Isot. 203 (2024) 111080.
  16. F.M.A. Alzahrani, Z.M. Elqahtani, J.S. Alzahrani, C. Eke, Z. Alrowaili, M. AlBuriahi, Gamma attenuation characteristics of silicon-rich glasses in Na2O-SiO2-Al2O3-CaO-ZnO system for radiation applications, Journal of Radiation Research and Applied Sciences 17 (1) (2024) 100760.
  17. N.W. Assaf, M. De La Pierre, M.K. Altarawneh, M.W. Radny, Z.-T. Jiang, B. Z. Dlugogorski, Structure, stability, and (Non)Reactivity of the low-index surfaces of crystalline B2O3-I, J. Phys. Chem. C 121 (21) (2017) 11346-11354, https://doi.org/10.1021/acs.jpcc.7b01347.
  18. O.N. Koroleva, M.V. Shtenberg, The structure of glasses M2O-B2O3 (М - Li, Na, K): estimation of thermodynamic characteristics of alkali borates and physicochemical modeling, J. Non-Cryst. Solids 601 (2023) 122053, https://doi.org/10.1016/j.jnoncrysol.2022.122053.
  19. J.S. Alzahrani, et al., Synthesis and optimization of B2O3-based glass: influence of MgO on hardness, structure properties, and radiation shielding performance, Mater. Today Commun. 37 (2023) 106933.
  20. A. Elsayed, M. Hussein, S. El-Mongy, H. Ibrahim, A. Shazly, Different approaches to purify the 185.7 keV of 235 U from contribution of another overlapping γ-transition, Physics of Particles and Nuclei Letters 18 (2021) 202-209.
  21. E. Uyar, M.H. Bolukdemir, The effect of front edge on efficiency for point and volume source geometries in p-type HPGe detectors, Nucl. Eng. Technol. 54 (11) (2022) 4220-4225.
  22. S. Vedavyas, et al., Characterization and analysis of physical, optical, and radiation attenuation properties of vanadium-infused in cadmium lead borate tellurite glasses, Opt. Mater. 150 (2024/04/01/2024) 115157, https://doi.org/10.1016/j.optmat.2024.115157.
  23. I.M. Nabil, M.G. El-Samrah, A.F.E. Sayed, A. Shazly, A. Omar, Radionuclides distribution and radiation hazards assessment of black sand separation plant's minerals: a case study, Sci. Rep. 14 (1) (Mar 4 2024) 5241, https://doi.org/10.1038/s41598-024-55633-1 (in eng).
  24. I. M. Nabil, K. Elkourghly, and A. F. El Sayed, "A Semi-empirical Method for Efficiency Calibration of an Hpge Detector against Different Sample Densities," Available at: SSRN 4449104.
  25. N. Alfryyan, M.M. Alnairi, A. Hammoud, I. Olarinoye, Z. Alrowaili, M. Al-Buriahi, Optical features and radiation absorption efficiency of borate glasses and the role of PbO/Eu2O3 substitution, Journal of Radiation Research and Applied Sciences 16 (4) (2023) 100743.
  26. M.C. Team, MCNP-A General Monte Carlo N-Particle Transport Code (X-5 Monte Carlo Team, Version 5). Vol. I: Overview and Theory, Los Alamos National Laboratory, Los Alamos, NM, 2003. LA-UR-03-1987.
  27. F.B. Brown, et al., MCNP version 5, Trans. Am. Nucl. Soc. 87 (273) (2002) 2-3935.
  28. I.M. Nabil, M.G. El-Samrah, A. Omar, A.F. Tawfic, A.F. El Sayed, Experimental, analytical, and simulation studies of modified concrete mix for radiation shielding in a mixed radiation field, Sci. Rep. 13 (1) (Oct 17 2023) 17637, https://doi.org/10.1038/s41598-023-44978-8.
  29. M.M. Salem, et al., Electrospun PVDF/Barium hexaferrite fiber composites for enhanced electromagnetic shielding in the X-band range, Results Phys. 53 (2023/09/18/2023) 106975, https://doi.org/10.1016/j.rinp.2023.106975.
  30. H.M.H. Zakaly, I.M. Nabil, S.A.M. Issa, N. Almousa, Z.Y. Khattari, Y.S. Rammah, Probing the elasticity and radiation protection potential of neodymium(III) doped zinc and niobium tellurite glasses: an integrated simulated and applied physics perspective, Mater. Today Commun. 37 (2023/12/01/2023) 107113, https://doi.org/10.1016/j.mtcomm.2023.107113.
  31. G. Hiremath, M. Hosamani, V. Singh, N. Ayachit, N. Badiger, Theoretical investigation of the gamma and neutron interaction parameters of some inorganic scintillators using phy-X/PSD and NGCal software, J. Nucl. Eng. Radiat. Sci. 9 (3) (2023) 032004.
  32. K. Gunoglu, H.V. Ozkavak, I. Akkurt, Evaluation of gamma ray attenuation properties of boron carbide (B4C) doped AISI 316 stainless steel: experimental, XCOM and Phy-X/PSD database software, Mater. Today Commun. 29 (2021) 102793.
  33. R. Kurtulus,, T. Kavas, The role of B2O3 in lithium-zinc-calcium-silicate glass for improving the radiation shielding competencies: a theoretical evaluation via PhyX/PSD, Journal of Boron 6 (1) (2021) 236-242.
  34. K.S. Shaaban, N. Tamam, H.A. Alghasham, Z. Alrowaili, M. Al-Buriahi, T. E. Ellakwa, Thermal, optical, and radiation shielding capacity of B2O3-MoO3-Li2O-Nb2O5 glasses, Mater. Today Commun. 37 (2023) 107325.
  35. N. Soppera, M. Bossant, E. Dupont, Janis 4: an improved version of the NEA java-based nuclear data information system, Nucl. Data Sheets 120 (2014) 294-296.
  36. D.A. Brown, et al., ENDF/B-VIII. 0: the 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data, Nucl. Data Sheets 148 (2018) 1-142.
  37. M.G. El-Samrah, A.M. El-Mohandes, A.M. El-Khayatt, S.E. Chidiac, MRCsC: a computer program for predicting fast neutron shielding, Radiat. Phys. Chem 182 (2021) 109356. https://doi.org/10.1016/j.radphyschem.2021.109356.
  38. M.G. El-Samrah, A. Tawfic, F.H. Sallam, A. Omar, Investigation of specially designed bentonite samples as potential bricks with better radiation shielding properties, Prog. Nucl. Energy 162 (2023) 104778.
  39. S. Chidiac, M. El-Samrah, M. Reda, M. Abdel-Rahman, Mechanical and radiation shielding properties of concrete containing commercial boron carbide powder, Construct. Build. Mater. 313 (2021) 125466.
  40. N.A. Muhammad, B. Armynah, D. Tahir, High transparent wood composite for effective X-ray shielding applications, Mater. Res. Bull. 154 (2022) 111930.
  41. M. Al Huwayz, K.S. Albarkaty, Z. Alrowaili, I. Olarinoye, Z.M. Elqahtani, M. Al-Buriahi, Gamma, neutron, and charged particle shielding performance of ABKT glass system, Journal of Radiation Research and Applied Sciences 16 (4) (2023) 100742.
  42. B. Basha, et al., Synthesis of Bi2O3 doping powder from CRT-screen waste glass: physical, structural, and radiation attenuation properties, Radiat. Phys. Chem. 214 (2024) 111279.
  43. Y.S. Rammah, A.T. Shah, O. Gorke, N. Kudrevatykh, A. Abouhaswa, Synthesis, physical, optical and gamma radiation shielding capacities of novel mercuric-sodium-lead-borate glasses, Mater. Res. Bull. 160 (2023) 112136.
  44. F.M.A. Alzahrani, K.S. Albarkaty, F. Calis,kan, I. Olarinoye, M. Al-Buriahi, Physical, microstructural, and radiation energy absorption properties of recycled CRT-screen glass doped with Bi2O3, Journal of Radiation Research and Applied Sciences 16 (4) (2023) 100727.
  45. Z. Alrowaili, M.M. Alnairi, I. Olarinoye, A. Alhamazani, G.S. Alshammari, M. Al-Buriahi, Radiation attenuation of fly ash and rice husk ash-based geopolymers as cement replacement in concrete for shielding applications, Radiat. Phys. Chem. 217 (2024) 111489.
  46. N. Tamam, et al., Fabrication and characterisation of TeO2-based composite doped with Yb3+ and Bi3+ for enhanced radiation shielding safety, Radiat. Phys. Chem. 215 (2024) 111315.
  47. A. Khalil, et al., A binary composite material of nano polyaniline intercalated with Nano-Fe2O3 for enhancing gamma-radiation-shielding properties: experimental and simulation study, Prog. Nucl. Energy 169 (2024) 105067.
  48. J.S. Alzahrani, et al., Influence of alkaline earth metals on the optical properties and radiation-shielding effectiveness of Sm3+-doped zinc borophosphate glasses, J. Electron. Mater. 52 (11) (2023) 7794-7806.
  49. B. Basha, et al., Synthesis, physical, optical, and radiation attenuation efficiency of Bi2O3+ SrF2+ Li2O glass system, Journal of Radiation Research and Applied Sciences 16 (4) (2023) 100676.
  50. N. Alfryyan, Z.A. Alrowaili, S. Alomairy, I.M. Nabil, M.S. Al-Buriahi, Radiation attenuation properties of zinc-borosilicate glasses containing Al2O3 and Gd2O3, Silicon 15 (18) (2023/09/01 2023) 8031-8043, https://doi.org/10.1007/s12633-023-02636-8.
  51. N. Alfryyan, M.M. Alnairi, N. Tamam, Z. Alrowaili, S.J. Alsufyani, M. Al-Buriahi, Nuclear attenuation ability of ternary alumina-borate glass system for medical shielding applications, Journal of Radiation Research and Applied Sciences 16 (4) (2023) 100712.
  52. K.M. Katubi, et al., Radiation Shielding efficiency of lead-tungsten-boron glasses with Sb, Al, and Bi against gamma, neutron and charge particles, Appl. Radiat. Isot. 204 (2024) 111139.
  53. M.S. Al-Buriahi, B.T. Tonguc, Study on gamma-ray buildup factors of bismuth borate glasses, Appl. Phys. A 125 (7) (2019) 482.
  54. Z. Alrowaili, et al., Radiation shielding performance of recycled waste CRT glasses doped with Li2O and Y2O3: potential applications in medical facilitates, Radiat. Phys. Chem. 212 (2023) 111200.
  55. O. Kilicoglu, F. Akman, H. Ogul, O. Agar, U. Kara, Nuclear radiation shielding performance of borosilicate glasses: numerical simulations and theoretical analyses, Radiat. Phys. Chem. 204 (2023) 110676.
  56. R. Stefan, P. Pascuta, A. Popa, O. Raita, E. Indrea, E. Culea, XRD and EPR structural investigation of some zinc borate glasses doped with iron ions, J. Phys. Chem. Solid. 73 (2) (2012) 221-226, https://doi.org/10.1016/j.jpcs.2011.10.039.
  57. A. Samir, M.A. Hassan, A. Abokhadra, L.I. Soliman, M. Elokr, Characterization of borate glasses doped with copper oxide for optical application, Opt. Quant. Electron. 51 (4) (2019) 123, https://doi.org/10.1007/s11082-019-1819-7.
  58. X. Liu, B. Geng, Q. Du, J. Ma, X. Liu, Temperature-controlled self-assembled synthesis of CuO, Cu2O and Cu nanoparticles through a single-precursor route, Materials Science and Engineering: A 448 (1) (2007) 7-14, https://doi.org/10.1016/j.msea.2006.08.104.
  59. H.T. Evans Jr., M.E. Mrose, A crystal chemical study of montroseite and paramontroseite, Am. Mineral. 40 (9-10) (1955) 861-875.
  60. V.S.R. Channu, R. Holze, B. Rambabu, R.R. Kalluru, Q.L. Williams, C. Wen, Reduction of V4+ from V5+ using polymer as a surfactant for electrochemical applications, Int. J. Electrochem. Sci. 5 (5) (2010) 605-614, https://doi.org/10.1016/S1452-3981(23)15309-0.
  61. D. Mardiansyah, et al., Effect of temperature on the oxidation of Cu nanowires and development of an easy to produce, oxidation-resistant transparent conducting electrode using a PEDOT:PSS coating, Sci. Rep. 8 (1) (2018) 10639, https://doi.org/10.1038/s41598-018-28744-9.
  62. P. Hu, et al., Vanadium oxide: phase diagrams, structures, synthesis, and applications, Chem. Rev. 123 (8) (2023) 4353-4415, https://doi.org/10.1021/acs.chemrev.2c00546.
  63. E.I. Kamitsos, Infrared spectroscopy of glasses, in: Modern Glass Characterization, 2015, pp. 1-42.
  64. C. Gautam, A.K. Yadav, A.K. Singh, A review on infrared spectroscopy of borate glasses with effects of different additives, ISRN Ceramics 2012 (2012) 428497, https://doi.org/10.5402/2012/428497.
  65. A. Yao, M.N. Rahaman, J. Lin, W. Huang, Structure and crystallization behavior of borate-based bioactive glass, J. Mater. Sci. 42 (23) (2007) 9730-9735, https://doi.org/10.1007/s10853-007-1995-x.
  66. X. Li, J. Feng, Y. Jiang, H. Lin, J. Feng, Preparation and anti-oxidation performance of Al2O3-containing TaSi2-MoSi2-borosilicate glass coating on porous SiCO ceramic composites for thermal protection, RSC Adv. 8 (24) (2018) 13178-13185, https://doi.org/10.1039/C8RA00703A.
  67. A.S. Ethiraj, D.J. Kang, Synthesis and characterization of CuO nanowires by a simple wet chemical method, Nanoscale Res. Lett. 7 (1) (2012) 70, https://doi.org/10.1186/1556-276X-7-70.
  68. S. Sagadevan, et al., Enhanced photocatalytic activity of rGO-CuO nanocomposites for the degradation of organic pollutants, Catalysts 11 (8) (2021) 1008, https://doi.org/10.3390/catal11081008.
  69. D. Navas, et al., Ammonium hexadeca-oxo-heptavanadate microsquares. A new member in the family of the V7O16 mixed-valence nanostructures, New J. Chem. 43 (45) (2019) 17548-17556, https://doi.org/10.1039/C9NJ02188D.
  70. Y. Wu, G. Gao, G. Wu, Self-assembled three-dimensional hierarchical porous V2O5/graphene hybrid aerogels for supercapacitors with high energy density and long cycle life, J. Mater. Chem. A 3 (5) (2015) 1828-1832, https://doi.org/10.1039/C4TA05537C.
  71. X. Zhou, et al., Multiwalled carbon nanotubes-V2O5 integrated composite with nanosized architecture as a cathode material for high performance lithium ion batteries, J. Mater. Chem. A 1 (48) (2013) 15459-15468, https://doi.org/10.1039/C3TA13143B.
  72. I. Akkurt, R. Boodaghi Malidarre, Gamma photon-neutron attenuation parameters of marble concrete by MCNPX code, Radiat. Eff. Defect Solid 176 (9-10) (2021) 906-918.
  73. J. Alzahrani, et al., Synthesis and optimization of alkaline earth borate glasses doped with Fe2O3: significance of BaO/MgO on the physical, structural features and radiation shielding performance, Journal of Radiation Research and Applied Sciences 16 (4) (2023) 100747.
  74. A. El-Taher, H.M. Zakaly, R. El-Sharkawy, E.A. Allam, M. Al Meshari, M. E. Mahmoud, Effect of bismuth oxide nanoparticles on the radiation shielding of bentonite clay using Fluka modeling calculations and simulation studying, Prog. Nucl. Energy 155 (2023) 104494.
  75. F.M.A. Alzahrani, et al., Gamma shielding and dosimetry parameters of sodium-silicate glasses with significant role of TbF3 addition, Silicon (2023) 1-11.
  76. N.A.M. Alsaif, et al., Fabrication, physical properties and γ-ray shielding factors of high dense B2O3-PbO-Na2O-CdO-ZnO glasses: impact of B2O3/PbO substitution, J. Mater. Sci. Mater. Electron. 35 (7) (2024/03/06 2024) 534, https://doi.org/10.1007/s10854-024-12290-4.
  77. Y.Y. Celen, M. Sarihan, G. Almisned, H.O. Tekin, I. Ekmekci, Calculation of gamma-ray buildup factors for some medical materials, Emerg. Mater. Res. 11 (3) (2022) 388-398.
  78. M. Al-Buriahi, E.M. Bakhsh, B. Tonguc, S.B. Khan, Mechanical and radiation shielding properties of tellurite glasses doped with ZnO and NiO, Ceram. Int. 46 (11) (2020) 19078-19083.
  79. I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (17) (1997) 1389-1401.