DOI QR코드

DOI QR Code

Study on the shielding performance of bismuth oxide as a spent fuel dry storage container based on Monte Carlo simulation

  • Guo-Qiang Zeng (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Shuang Qi (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Peng Cheng (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Sheng Lv (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Fei Li (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Xiao-Bo Wang (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology) ;
  • Bing-Hai Li (Airborne Survey and Remote Sensing Center of Nuclear Industry) ;
  • Qing-Ao Qin (College of Nuclear Technology and Automation Engineering, Chengdu University of Technology)
  • Received : 2024.01.31
  • Accepted : 2024.03.21
  • Published : 2024.08.25

Abstract

For traditional spent fuel shielding materials, due to physical and chemical defects and cost constraints, they have been unable to meet the needs. Therefore, this paper carries out the first discussion on the application and performance of bismuth in neutron shielding by establishing Monte Carlo simulation on the neutron flux model of shielded spent fuel. Firstly, functional fillers such as bismuth oxide, lead oxide, boron oxide, gadolinium oxide and tungsten oxide are added to the matrices to compare the shielding rates of aluminum alloy matrix and silicone rubber matrix. The shielding rate of silicone rubber mixture is higher than aluminum alloy mixture, reaching more than 56%. The optimal addition proportion of bismuth oxide and lead oxide is 30%, and the neutron radiation protection efficiency reaches 60%. Then, the mass attenuation coefficients of bismuth oxide, lead oxide, boron oxide, gadolinium oxide and tungsten oxide in silicone rubber matrix are simulated with the change of functional fillers proportion and neutron energy. This simulation result shows that the mixture with functional fillers has good shielding performance for low energy neutrons, but poor shielding effect for high energy neutrons. Finally, in order to further evaluate the possibility of replacing lead oxide with bismuth oxide as shielding material, the half-value layers and various properties of bismuth oxide and lead oxide are compared. The results show that the shielding properties of bismuth oxide and lead oxide are basically the same, and the mechanical properties, heat resistance, radiation resistance and environmental protection of bismuth oxide are better than that of lead oxide. Therefore, in the case of neutron source strengths in the range of 0.01-6 MeV and secondary gamma rays produced below 2.5 MeV, bismuth can replace lead in neutron shielding applications.

Keywords

Acknowledgement

This work was supported by the Natural Science Foundation of Sichuan Province (No. 24NSFSC2220, 23NSFSCC0116 and 2021JDTD0018), the National Natural Science Foundation of China (No. 42127807), and the Nuclear Energy Development Project (No. [2021]-88). We thank the CDUT Team 203 for their English language review.

References

  1. Y. Deng, Measures for the management of spent fuel from the heap storage research in China, Modern salt chemical industry 13 (3) (2021) 115-116, https://doi.org/10.19465/j.cnki.20959710.2021.03.055.
  2. Habibe Durdu, Banu Bulut Acar, Performance evaluation of a currently in-use dry storage cask design for spent accident tolerant fuel loading case under normal operation condition, Kerntechnik 88 (4) (2023) 424-436, https://doi.org/10.1515/kern-2023-0001.
  3. S. Alyokhina, The information system concept for thermal monitoring of a spent nuclear fuel storage container, Nucl. Eng. Technol. 55 (10) (2023) 3898-3906, https://doi.org/10.1016/j.net.2023.07.004.
  4. A. T zdemir, Flexible neutron shielding composite material of EPDM rubber with boron trioxide: mechanical, thermal investigations and neutron shielding tests-Science Direct, Radiat. Phys. Chem. 131 (2017) 7-12, https://doi.org/10.1016/j.radphyschem.2016.10.012.
  5. S. Akbas,, Research on fission and fusion neutron shielding performance of various materials, Radiat. Phys. Chem. (2024) 111601, https://doi.org/10.1016/j.radphyschem.2024.111601.
  6. W. Sun, G. Hu, H. Xu, Study on the influence of reinforced particles spatial arrangement on the neutron shielding performance of the composites, Materials 15 (12) (2022) 4266, https://doi.org/10.3390/ma15124266.
  7. C. Zhang, S. Wang, L. Tian, Study on radiation and thermal aging resistance of epoxy resin/boron carbide composites, Mater. Rev. (23) (2023) 1-14. http://kns.cnki.net/kcms/detail/50.1078.TB.20230410.1551.044.html (in Chinese). 1078.TB.20230410.1551.044.html
  8. Q. Shao, Q. Zhu, Y. Wang, et al., Development and application analysis of high-energy neutron radiation shielding materials from tungsten boron polyethylene, Nucl. Eng. Technol. (2024), https://doi.org/10.1016/j.net.2024.01.023.
  9. Y.O. Chetverikov, A.A. Bykov, A.V. Krotov, Boron-containing plastic composites as neutron shielding material for additive manufacturing processes, Nucl. Instrum. Methods A. (2023) 168406, https://doi.org/10.1016/j.nima.2023.168406.
  10. P. Wang, X. Tang, H. Chai, Design, fabrication, and properties of a continuous carbon-fiber reinforced Sm2O3/polyimide gamma ray/neutron shielding material, Fusion Eng. Des. 101 (DEC.) (2015) 218-225, https://doi.org/10.1016/j.fusengdes.2015.09.007 (in Chinese).
  11. K. Okuno, Neutron shielding material based on colemanite and epoxy resin, Radiat. Protect. Dosim. 115 (1/4) (2005) 258-261, https://doi.org/10.1093/rpd/nci154.
  12. M. Divya, S.K. Albert, V.T. Paul, Characterization of eutectic borides formed during solidification of borated stainless steel 304B4, Weld. World 63 (2019) 1681-1693, https://doi.org/10.1007/s40194-019-00786-1.
  13. B. Park, D. Lee, I. Jo, et al., Automated quantification of reinforcement dispersion in B4C/Al metal matrix composites, Compos. B Eng. 181 (2020) 107584, https://doi.org/10.1016/j.compositesb.2019.107584.
  14. N. Kumar, M.K. Manoj, Influence of B 4 C on dry sliding wear behavior of B 4 C/Al-Mg-Si composites synthesized via powder metallurgy route, Met. Mater. Int. 27 (2021) 4120-4131, https://doi.org/10.1007/s12540-020-00814-6.
  15. R. Raj, D.G. Thakur, Qualitative and quantitative assessment of microstructure in Al-B4C metal matrix composite processed by modified stir casting technique, Arch. Civ. Mech. Eng. 16 (4) (2016) 949-960, https://doi.org/10.1016/j.acme.2016.07.004.
  16. U. Gokmen, Gamma and neutron shielding properties of B4C particle reinforced Inconel 718 composites, Nucl. Eng. Technol. 54 (3) (2022) 1049-1061, https://doi.org/10.1016/j.net.2021.09.028.
  17. A.Z. Mehrjardi, L. Gholamzadeh, F. Zafari, Coating of polyester fabrics with micro-particles of Bi2O3 and BaO for ionization ray shielding, Appl. Radiat. Isot. 192 (2023) 110573, https://doi.org/10.1016/j.apradiso.2022.110573.
  18. M. Elsafi, A.H. Almuqrin, H.M. Almutairi, Grafting red clay with Bi2O3 nanoparticles into epoxy resin for gamma-ray shielding applications, Sci. Rep. 13 (1) (2023) 5472, https://doi.org/10.1038/s41598-023-32522-7.
  19. R.M. El-Sharkawy, F.S. Abdou, M.A. Gizawy, et al., Bismuth oxide nanoparticles (Bi2O3 NPs) embedded into recycled-Poly (vinyl chloride) plastic sheets as a promising shielding material for gamma radiation, Radiat. Phys. Chem. 208 (2023) 110838, https://doi.org/10.1016/j.radphyschem.2023.110838.
  20. M. Gulmen, Y. Bukte, Investigating Bi2O3-B2O3-BaO glass systems for radiation shielding applications, J. Phys. Sci. 33 (1) (2022) 51-64, https://doi.org/10.21315/jps2022.33.1.4.
  21. Shirkhanloo Hamid, Mostafa Safari, Seyed Mohammad Amini, Mehdi Rashidi, Novel semisolid design based on bismuth oxide (Bi2O3) nanoparticles for radiation protection, Nanomedicine Research Journal 2 (4) (2017) 230-238, https://doi.org/10.22034/nmrj.2017.04.004.
  22. A. Ratep, A. Abdelaziem, M.Y. Hanfi, et al., Enhancing gamma-ray shielding with bismuth oxide-infused boron oxides, Opt. Quant. Electron. 56 (2) (2024) 143, https://doi.org/10.1007/s11082-023-05788-4.
  23. Y. Zhang, Shielding performance analysis of composite biological shielding doors in spent fuel reprocessing plants, Chinese Science and Technology Achievements 12 (35-38) (2021) 64 (in Chinese).
  24. R.S. Keshavamurthy, D.S. Kumar, Radiation safety and radiation shielding design [M]. Physics of Nuclear Reactors, Academic Press, 2021, pp. 635-694.
  25. D. Grgic, M. Matijevic, P. Duckic, et al., Radiation shielding analysis of the HISTORM FW storage cask, Nucl. Eng. Des. 396 (2022) 111878, https://doi.org/10.1016/j.nucengdes.2022.111878.
  26. A. Torkamani, A.T. Khotbehsara, F. Rahmani, et al., Conceptual design of hybrid target for molybdenum-99 production based on heavywater, Nucl. Eng. Technol. 55 (5) (2023) 1863-1870, https://doi.org/10.1016/j.net.2023.01.015.
  27. Li Zhu, Liangquan Ge, et al., Optimization of neutron shield with MC simulation of formation element logging instrument, Nucl. Electron. Detect. Technol. 36 (9) (2016) 974-977 (in Chinese).
  28. Ruiyi Han, Monte Carlo Simulation of Formation Element Logging Based on DT Neutron Source, Jilin University, 2019.
  29. A. Un, F. Demir, Determination of mass attenuation coefficients, effective atomic numbers and effective electron numbers for heavy-weight and normal-weight concretes, Appl. Radiat. Isot. 80 (2013) 73-77, https://doi.org/10.1016/j.apradiso.2013.06.015.
  30. G. Xu, H. Zhang, M. Tian, Radiation protection concrete effectively shield element detection method research [C] China metallurgical construction research institute co., LTD, in: Proceedings of Industrial Building Academic Exchange in 2021 (Part Ii), 2021, p. 5, https://doi.org/10.26914/Arthurc.nkihy.2021.045805.
  31. B. Wang, T. Qiu, J. Yin, et al., Properties and thermal neutron areal transmittance of a B4C filled thermoplastic elastomer based rubber composite, Nuclear Materials and Energy 31 (2022) 101193, https://doi.org/10.1016/j.nme.2022.101193.
  32. Pawel Sikora, Ahmed M. El-Khayatt, Evaluation of the effects of bismuth oxide (Bi2O3) micro and nanoparticles on the mechanical, microstructural and c-ray/neutron shielding properties of Portland cement pastes, Construct. Build. Mater. (2021) 122758, https://doi.org/10.1016/j.conbuildmat.2021.122758.
  33. C.J. Tung, M.T. Lin, F.Y. Hsu, et al., Half-value layer determination using thermoluminescent dosimeters for digital mammography, Radiat. Meas. 45 (3-6) (2010) 729-732, https://doi.org/10.3969/j.issn.1000-1158.2021.06.19.
  34. M.T. Alresheedi, M. Elsafi, Y.T. Aladadi, Assessment of silicone rubber/lead oxide composites enriched with Bi2O3, WO3, BaO, and SnO2 nanoparticles for radiation shielding applications, Polymers 15 (9) (2023) 2160, https://doi.org/10.3390/polym15092160.
  35. M.M. Kassab, Effect of chromium contents on radiation shielding and macroscopic cross-section in steel alloys, Appl. Radiat. Isot. 186 (2022) 110263, https://doi.org/10.1016/j.apradiso.2022.110263.
  36. I. Boukhris, A. Alalawi, M.S. Al-Buriahi, et al., Radiation attenuation properties of bioactive glasses doped with NiO, Ceram. Int. 46 (12) (2020) 19880-19889, https://doi.org/10.1016/j.ceramint.2020.05.047.
  37. P. Gokul, J.A. Kumar, R. Preetha, Additives in concrete to enhance neutron attenuation characteristics-A critical review, Results Eng (2023) 101281.
  38. E. Mansouri, A. Mesbahi, R. Malekzadeh, Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: effect of particle size, photon energy and nano-particle concentration, Radiat. Environ. Biophys. 18 (4) (2020) 611, https://doi.org/10.1007/s00411-020-00865-8.
  39. J. Zhao, Based on Bi, Eu, X-Ray Shielding Composites Reinforced Europium Collaborative Research, Southwest university of science and technology, 2023, https://doi.org/10.27415/d.cnki.gxngc.2023.001233 (in Chinese).
  40. E. Kalkornsuranee, S. Intom, N. Lehman, et al., Mechanical and gamma radiation shielding properties of natural rubber composites: effects of bismuth oxide (Bi2O3) and lead oxide (PbO), Mater. Res. Innovat. 26 (1) (2022) 8-15, https://doi.org/10.1080/14328917.2020.1853383.
  41. D. Toyen, E. Wimolmala, K. Saenboonruang, Multi-layered composites of natural rubber (NR) and bismuth oxide (Bi2O3) with enhanced X-ray shielding and mechanical properties, Polymers 15 (12) (2023) 2717, https://doi.org/10.3390/polym15122717.
  42. L. Chang, Y. Zhang, Y. Liu, et al., Preparation and characterization of tungsten/epoxy composites for γ-rays radiation shielding, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 356 (2015) 88-93.
  43. D. Toyen, A. Rittirong, W. Poltabtim, et al., Flexible, lead-free, gamma-shielding materials based on natural rubber/metal oxide composites, Iran. Polym. J. (Engl. Ed.) 27 (2018) 33-41, https://doi.org/10.1007/s13726-017-0584-3.
  44. S. Intom, E. Kalkornsurapranee, J. Johns, et al., Mechanical and radiation shielding properties of flexible material based on natural rubber/Bi2O3 composites, Radiat. Phys. Chem. 172 (2020) 108772, https://doi.org/10.1016/j.radphyschem.2020.108772.
  45. Xing Jiang, Y.A.O. Yangui, Yongcheng Xie, et al., Three-dimensional simulation analysis of decay heat derived from dry storage module of spent fuel, Atomic Energy Sci. Technol. 42 (Supp. 2) (2008) 477.
  46. S. Prabhu, S.G. Bubbly, S.B. Gudennavar, Bismuth (III) oxide decorated graphene oxide filled epoxy nanocomposites: thermo-mechanical and photon attenuation properties, Adv. Compos. Mater. 32 (4) (2023) 602-628, https://doi.org/10.1080/09243046.2022.2128264.
  47. S. Chen, S. Nambiar, Z. Li, et al., Bismuth oxide-based nanocomposite for high-energy electron radiation shielding, J. Mater. Sci. 54 (4) (2019) 3023-3034, https://doi.org/10.1007/s10853-018-3063-0.
  48. A. Saeed, W.A. Abu-raia, Silicone rubber composite reinforced by bismuth tungsten oxide as an effective gamma ray protective materials, J. Polym. Res. 29 (5) (2022) 208, https://doi.org/10.1007/s10965-022-03055-w.
  49. Y. Sun, X. Wu, Y. Ding, Research progress of radiation protection materials containing bismuth, Journal of modern chemical industry 43 (7) (2023) 59-62 (in Chinese).
  50. M. Xiao, Q. Qin, X. He, F. Li, Shielding capability research on composite base materials in hybrid neutron-gamma mixed radiation fields, Materials 16 (5) (2023) 2084, https://doi.org/10.3390/ma16052084.
  51. Mahmoud I. Abbas, Mona M. Gouda, Impact of bulk and nano bismuth oxide on the attenuation parameters of bentonite barite composites, Coatings 13 (10) (2023) 1670, https://doi.org/10.3390/COATINGS13101670.
  52. Z. Guo, Development and application of bismuth, Modern Chemical Research (7) (2017) 9-11 (in Chinese).