DOI QR코드

DOI QR Code

Crevice chemistry and corrosion in high temperature water: A review

  • Young-Jin Kim (Institute of Future Energy Technology, FNC Technology Co. Ltd) ;
  • Chi Bum Bahn (School of Mechanical Engineering, Pusan National University) ;
  • Seung Heon Baek (Institute of Future Energy Technology, FNC Technology Co. Ltd) ;
  • Wonjun Choi (School of Mechanical Engineering, Pusan National University) ;
  • Geun Dong Song (Institute of Future Energy Technology, FNC Technology Co. Ltd)
  • Received : 2023.11.19
  • Accepted : 2024.03.10
  • Published : 2024.08.25

Abstract

Crevice corrosion is a localized attack of metal that occurs in occluded areas of materials as a result of a degradation of the oxide passivity on the metal surface in contact with stagnant environments. Materials suffer crevice corrosion when generally the crevice opening gap is so narrow that the migration or diffusion of ionic species into the crevice can be restricted and consequently results in the production of aggressive crevice solutions and differential aeration conditions over time. Among several factors affecting the crevice corrosion, differential aeration causing oxygen depletion associated with the geometry of components, acidification, and accumulation of aggressive species (e.g., Cl-, SO4-2, NO3- ) in the crevice solution become main aspects of the mechanism of the crevice corrosion. Thus, controlling such factors is most critically necessary to either prevents or terminates the crevice corrosion. This paper covers electrochemical aspects of the crevice corrosion, roles of critical factors affecting the crevice corrosion, and electrochemical processes of impurity species in the crevice in high temperature water. A better and clear understanding of mechanisms of the crevice corrosion is important to develop the protection and mitigation technology against the crevice corrosion in order for maintaining the integrity and longevity of structural components at various industries

Keywords

Acknowledgement

This work was financially supported by Korea Hydro & Nuclear Power Co. Ltd. (KHNP) (Contract No. 22-Tech-4).

References

  1. G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould, J. Payer, International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, NACE International, Houston TX, 2016. March 1. 
  2. Nuclear Energy for a Net Zero World, International Atomic Energy Agency, Vienna, September, 2021. 
  3. R.W. Staehle, J.A. Gorman, Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 1, Corrosion 59 (11) (2003) 931-994. 
  4. R.W. Staehle, J.A. Gorman, Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 2, Corrosion 60 (1) (2004) 5-63. 
  5. R.W. Staehle, J.A. Gorman, Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 3, Corrosion 60 (2) (2004) 115-180. 
  6. R. Kilian, R. Zimmer, R. Arenz, J. Beck, T. Schonherr, M. Widera, Operating experience with alloy 800 SG tubing in europe, in: Proc. 13th International Conference on Environmental Degradation in Nuclear Power Systems - Water Reactors, 2007. Whistler, British Columbia, Canada, April 19-23. 
  7. Steam Generator Management Program: Alloy 800 Steam Generator Tubing Experience, Electric Power Research Institute, Palo Alto, CA, 2012 1024992. 
  8. S.D. Cramer, B.C. Covino (Eds.), ASM Handbook Volume 13A Corrosion: Fundamentals, Testing, and Protection, ASM International, Materials Park, OH, 2003. 
  9. M.G. Fontana, N.D. Greene, Corrosion Engineering, McGraw Hill Higher Education, 1978. 
  10. J.W. Oldfield, W.H. Sutton, Crevice corrosion of stainless steels: I. A mathematical model, J. British Corrosion V- 13 (1) (1978) 13-22. 
  11. R.K. Dayal, "Ch.4-Crevice corrosion of stainless steel in corrosion of austenitic strainless steels: mechanism, in: H.S. Khatak, B. Raj (Eds.), Mitigation and Monitoring, 2002, pp. 106-116. 
  12. A. Alavi, R.A. Cottis, The determination of pH, potential, and chloride concentration in corroding crevices on 304 stainless steel and 7475 aluminum alloy, Corrosion Sci. 27 (5) (1987) 443-451. 
  13. C.J. Semino, J.R. Galvele, Passivity breakdown of high purity iron and AISI 4340 steel in 0.5M NaCl solution, Corrosion Sci. 16 (1976) 297-306. 
  14. J.M. Silcock, Effect of acidity and applied potential on the stress corrosion cracking of type 316 austenitic steel in MgCI2, Br. Corrosion J. 14 (4) (1979) 206-215. 
  15. H. Leinonen, T. Schildt, H. Hanninen, Stress corrosion cracking-crevice interaction in austenitic stainless steels characterized by acoustic emission, Metallurgical and Materials Transaction A (42A) (2011) 424-433. 
  16. H.W. Pickering, Significance of the local electrode potential within pits, crevices and cracks, Corrosion Sci. 29 (1989) 325-341. 
  17. B.D. Force, H. Pickering, A clearer view of how crevice corrosion occurs, J. Metal, September (1995). 
  18. Yuan Xu, H.W. Pickering, The initial potential and current distribution in the crevice corrosion process, J. Electrochem. Soc. 140 (3) (1993) 658-668. 
  19. Y.-J. Kim, P.L. Andresen, Data quality, issues, and guidelines for electrochemical corrosion potential measurement in high temperature water, Corrosion 59 (7) (2003) 584-596. 
  20. Y.-J. Kim, Effect of water chemistry on corrosion behavior of 304SS in 288℃ water, in: International Conference on Water Chemistry of Nuclear Reactor Systems, EPRI, San Francisco, CA, 2004. October 11-14. 
  21. Y.-J. Kim, Electrochemical interactions of hydrogen, oxygen, and hydrogen peroxide on metal surfaces in high temperature, high purity water, in: Proc. 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, TMS, 1997, pp. 641-648. August 10-14, Amelia Island, FL. 
  22. Y.-J. Kim, P.L. Andresen, "Catalytic response and electrode kinetics on noble metal-treated type 304 stainless steel in 288℃ water, Corrosion 56 (12) (2000) 1242-1249. 
  23. Y.-J. Kim, L.W. Niedrach, P.L. Andresen, Corrosion potential behavior of noble metal-modified alloys in high temperature water, Corrosion 52 (10) (1996) 738-742. 
  24. F.P. Ford, P.L. Andresen, Corrosion in nuclear systems: environmentally assisted cracking in light water reactors, in: P. Marcus, J. Ouder (Eds.), Corrosion Mechanisms, Marcel Dekker, 1994, pp. 501-546. 
  25. P.L. Andresen, Y.-J. Kim, Developments in SCC mitigation by electrocatalysis, in: Proc. 15th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, TMS, Colorado Springs, CO, August 7-11, 2011, pp. 1967-1988. 
  26. C.B. Bahn, S.H. Oh, B.G. Park, I.S. Hwang, I.H. Rhee, U.C. Kim, J.W. Na, Impurity concentration behaviors in a boiling tubesheet crevice: Part II. Packed crevice, Nucl. Eng. Des. 225 (2003) 145-157. 
  27. Computer-calculated potential pH diagrams to 300oC, EPRI NP-3137 2 (1983). EPRI, June. 
  28. C.B. Bahn, K.E. Kazsa, J. Park, W.J. Shack, "Experimental simulation of Na and Cl hideout in steam generator crevices ", Nucl. Eng. Des. 250 (2012) 156-166. 
  29. Y. Wada, K. Ishida, M. Tachibana, M. Aizawa, M. Fuse, Hydrazine and hydrogen Co-injection to mitigate stress corrosion cracking of structural materials in boiling water reactors (VII) - effects of bulk water chemistry on ECP distribution inside a crack, J. Nucl. Sci. Technol. (Tokyo, Jpn.) 44 (11) (2007) 1448-1457. 
  30. D.F. Taylor, Crevice corrosion of alloy 600 in high temperature aqueous environments, Corrosion 35 (12) (1979) 550-559. 
  31. D. Chen, X. Wu, E. Han, Crevice corrosion behavior of nuclear-grade 304 stainless steel in 290 ℃ pure water, in: 4th. International Symposium on Materials and Reliability in Nuclear Power Plants, 2015, pp. 20-23, 349, Sep 2015, Shenyang, China, Sep. 
  32. Y. Wada, A. Watanabe, K. Ishida, M. Tachibana, N. Shigenaka, N. Kawashima, Local radiolysis and electrochemical corrosion potential in crevice environment, in: NPC 2012-Nuclear Chemistry Conference: 9th International Workshop on Radiolysis, Electrochemistry and Materials Performance, 2012. September 24-27, Paris, France. 
  33. H.P. Seifert, S. Ritter, "The influence of ppb levels of chloride impurities on the stress corrosion crack growth behaviour of low-alloy steels under simulated boiling water reactor conditions, Corrosion Sci. 108 (2016) 134-147. 
  34. EPRI, BWRVIP-190 Revision 1: BWR Vessel and Internals Project, Volume 1: BWR Water Chemistry Guidelines - Mandatory, Needed, and Good Practice Guidance, EPRI, Palo Alto, CA, 2014. 
  35. S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013) 735-758. 
  36. D.F. Taylor, M. Silverman, Some effects of electrolyte composition and heat treatment on the aqueous crevice corrosion of alloy 600 and type 304 stainless steel at 288℃, Corrosion 36 (8) (1980) 447-458. 
  37. F. Ning, J. Tan, Z. Zhang, X. Wang, X. Wu, E.-H. Han, W. Ke, Crevice corrosion behavior of alloy 690 in high-temperature aerated chloride solution, Materials 15 (2022) 5434-5446. 
  38. W.L. Marshall, E.V. Jones, J. Physical, Chemistry 70 (1966) 4028. 
  39. W.J. Shack, T.F. Kassner, P.S. Maiya, J.Y. Park, W.E. Ruther, Environmental assisted cracking in light water reactors, in: NRC NUREG/CR-4667 Vol.1 & II, Argonne Nat Labs, 1986. ANL-86-31 and ANL-86-37. 
  40. C.C. Lin, Radiochemistry in Nuclear Power Reactors, Nuclear Science Series, NASNS-3119, National Academy Press, Washington D.C., 1996. 
  41. Y.-J. Kim, G.D. Song, S.H. Baek, B.K. Kim, J.S. Cheon, J.H. Kim, H.-S. Shim, S.-H. Jeon, H. Kim, Radiochemical behavior of nitrogen species in high temperature water, Nucl. Eng. Technol. 55 (2023) 3183-3193.