DOI QR코드

DOI QR Code

Analysis of heat-loss mechanisms with various gases associated with the surface emissivity of a metal containment vessel in a water-cooled small modular reactor

  • Geon Hyeong Lee (Department of Nuclear Engineering, Hanyang University) ;
  • Jae Hyung Park (Department of Nuclear Engineering, Hanyang University) ;
  • Beomjin Jeong (Department of Nuclear Engineering, Hanyang University) ;
  • Sung Joong Kim (Department of Nuclear Engineering, Hanyang University)
  • 투고 : 2023.09.27
  • 심사 : 2024.03.03
  • 발행 : 2024.08.25

초록

In various small modular reactor (SMR) designs currently under development, the conventional concrete containment building has been replaced by a metal containment vessel (MCV). In these systems, the gap between the MCV and the reactor pressure vessel is filled with gas or vacuumed weakly, effectively suppressing conduction and convection heat transfer. However, thermal radiation remains the major mode of heat transfer during normal operation. The objective of this study was to investigate the heat-transfer mechanisms in integral pressurized water reactor (IPWR)-type SMRs under various gas-filled conditions using computational fluid dynamics. The use of thermal radiation shielding (TRS) with a much lower emissivity material than the MCV surface was also evaluated. The results showed that thermal radiation was always the dominant contributor to heat loss (48-97%), while the conjugated effects of the gas candidates on natural convection and thermal radiation varied depending on their thermal and radiative properties, including absorption coefficient. The TRS showed an excellent insulation performance, with a reduction in the total heat loss of 56-70% under the relatively low temperatures of the IPWR system, except for carbon dioxide (13%). Consequently, TRS can be utilized to enhance the thermal efficiency of SMR designs by suppressing the heat loss through the MCV.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT: Ministry of Science and ICT) (No. RS-2022-00144202) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00261295).

참고문헌

  1. G. Iyer, N. Hultman, S. Fetter, S.H. Kim, Implications of small modular reactors for climate change mitigation, Energy Econ. 45 (2014) 144-154, https://doi.org/10.1016/j.eneco.2014.06.023. 
  2. H. Subki, Advances in Small Modular Reactor Technology Developments, IAEA-NPTD Webinar on Advances in Small Modular Reactor (SMR) Design and Technology Developments, A Booklet Supplement to the IAEA Advanced Reactors Information System (ARIS), International Atomic Energy Agency, Vienna, 2020. 
  3. M.D. Alamgir, M. Aritomi, S.M. Banoori, M. Atique, I. Bylov, S. Choi, M. Garcia, M. Gimenez, M. Grinberg, H. Hidayatullah, D.T. Ingersoll, G. Jilani, T. Kanagawa, M. Kim, T. Koshy, V. Kuznetsov, W. Marquino, A.K. Nayak, K.B. Park, K.R. Qureshi, Ricotti, M. Enrico, D. Song, M.H. Subki, S. Susyadi, S. Syarip, R. Temple, A. Ui, K. Veshnyakov, K. Yamada, C. Zeliang, Design safety considerations for watercooled small modular reactor incorporating lessons learned from the Fukushima Daiichi accident, in: IAEA Tecdoc Series. No. 1785, International Atomic Energy Agency, Vienna, Austria, 2016. 
  4. D. Michaelson, J. Jiang, Review of integration of small modular reactors in renewable energy microgrids, Renew. Sustain. Energy Rev. 152 (2021) 111638, https://doi.org/10.1016/j.rser.2021.111638. 
  5. C.A. Lloyd, T. Roulstone, R.E. Lyons, Transport, constructability, and economic advantages of SMR modularization, Prog. Nucl. Energy 134 (3) (2021) 103672, https://doi.org/10.1016/j.pnucene.2021.103672. 
  6. G. Black, M.A. Taylor Black, D. Solan, D. Shropshire, Carbon free energy development and the role of small modular reactors: a review and decision framework for deployment in developing countries, Renew. Sustain. Energy Rev. 43 (2015) 83-94, https://doi.org/10.1016/j.rser.2014.11.011. 
  7. R.J. Belles, Key reactor system components in integral pressurized water reactors (iPWRs), Handbook of Small Modular Nuclear Reactors (Second Edition), Woodhead Publish. Ser. Energy (2021) 95-115, https://doi.org/10.1016/B978-0-12-823916-2.00005-9. 
  8. Hyo Jun An, Jae Hyung Park, Chang Hyun Song, Jeong Ik Lee, Yonghee Kim, Sung Joong Kim, Strategic analysis on sizing of flooding valve for successful accident management of small modular reactor, Nucl. Eng. Technol. 56 (3) (2024) 949-958, doi:10.1016/j.net.2023.11.025. 
  9. M.D. Carelli, L.E. Conway, L. Oriani, B. Petrovic, C.V. Lombardi, M.E. Ricotti, A.C. O. Barroso, J.M. Collado, L. Cinotti, N.E. Todreas, D. Grgic, M.M. Moraes, R. D. Boroughs, H. Ninokata, D.T. Ingersoll, F. Oriolo, The design and safety features of the IRIS reactor, Nucl. Eng. Des. 230 (2004) 151-167, https://doi.org/10.1016/j.nucengdes.2003.11.022. 
  10. M. Santinello, M. Ricotti, Long-term decay heat removal in a submerged SMR, Ann. Nucl. Energy 131 (2019) 39-50, https://doi.org/10.1016/j.anucene.2019.03.016. 
  11. J.N. Reyes Jr., NuScale plant safety in response to extreme events, Nucl. Technol. 178 (2017) 153-163, https://doi.org/10.13182/NT12-A13556. 
  12. J.N. Reyes Jr., J.T. Groome, Evacuated containment vessel for nuclear reactor, US 8,588,360 B2, Filed: Mar. 4, Date of Patent: Nov. 19, 2013. URL: https://patents.google.com/patent/US8588360, 2009. 
  13. GE-Hitachi Nuclear Energy Americas, LLC, BWRX-300 containment performance, Final safety evaluation for GE-HITACHI licensing topical report, Enclosure 2: NEDO-33911-A, Revision 3, ML22007A024, URL: https://www.nrc.gov/docs/ML2200/ML22007A024.pdf, 2022. 
  14. M.D. Carelli, International reactor innovative and secure, final technical progress report, No.: STD-ES-03-40, United States, URL: https://www.osti.gov/servlets/purl/816832-CfMBvk/native/, 2003. 
  15. N. Shulyak, Westinghouse small modular reactor (SMR) programe, in: 10th International Conference on Nuclear Option in Countries with Small and Medium Electricity Grids, Jun, 2014, pp. 1-4. Zadar, Croatia. 
  16. R. Martin, E.S. Williams, J.G. Williams, Thermal-hydraulic design of the B&W mPowerTM SMR, Babcock & Wilcox mPower, Inc, Trans. Am. Nucl. Soc. 109 (2013) 2269-2272. 
  17. G. Haratyk, V. Gourmel, Preliminary accident analysis of Flexblue underwater reactor, EPJ Nucl. Sci. Technol. 1 (2015) 6, doi:10.1051/epjn/e2015-50030-x. 
  18. Z. Cheng, Safety analysis of a compact integral small light water reactor, in: Degree of Master of Science in Nuclear Science and Engineering, Massachusetts Institute of Technology, 2020. 
  19. Innovative Small Module Reactor (i-SMR) Technology Development Project Group, Korea Energy Information Culture Agency (accessed June 16, 2023), https://e-policy.or.kr/info/list.php?admin_mode=read&no=10631&make=&search=&prd_cate=1.. 
  20. M. Liu, D. Zhang, C. Wang, S. Qiu, G.H. Su, W. Tian, Experimental study on the heat transfer characteristics of fluoride salt in the new conceptual passive heat removal system of molten salt reactor, Wiley Energy Res. 42 (2017) 1635-1648, https://doi.org/10.1002/er.3959. 
  21. K. Chen, C. Yan, Z. Meng, X. Wu, S. Song, Z. Yang, J. Yu, Experimental analysis on passive residual heat removal in molten salt reactor using single cooling thimble test system, Energy 112 (2016) 1049-1059, https://doi.org/10.1016/j.energy.2016.07.004. 
  22. S. Zhang, X. Sun, Convective and radiative heat transfer in molten salts, Nucl. Technol. 206 (2020) 1721-1739, https://doi.org/10.1080/00295450.2020.1749481. 
  23. A. Frisani, T.A. Hassan, Computation fluid dynamics analysis of the reactor cavity cooling system for very high temperature gas-cooled reactors, Ann. Nucl. Energy 72 (2014) 257-267, https://doi.org/10.1016/j.anucene.2014.04.039. 
  24. K. Takamatsu, R. Hu, New reactor cavity cooling system having passive safety features using novel shape for HTGRs and VHTRs, Ann. Nucl. Energy 77 (2015) 165-171, https://doi.org/10.1016/j.anucene.2014.11.011. 
  25. H. Zhao, Y. Dong, Y. Zheng, T. Ma, X. Chen, Numerical simulation on heat transfer process in the reactor cavity of modular high temperature gas-cooled reactor, Appl. Therm. Eng. 125 (2017) 1015-1024, https://doi.org/10.1016/j.applthermaleng.2017.05.205. 
  26. C.H. Oh, G.C. Park, C. Davis, RCCS experiments and validation for high-temperature gas-cooled reactor, Nucl. Technol. 167 (2009) 107-117, https://doi.org/10.13182/NT09-A8855. 
  27. A. Hamdani, S. Abe, M. Ishigaki, Y. Sibamoto, T. Yonomoto, Unsteady natural convection in a cylindrical containment vessel (CIGMA) with external wall cooling: numerical CFD simulation, Energies 13 (14) (2020) 3652, https://doi.org/10.3390/en13143652. 
  28. Y. Dong, B. Sosna, O. Korup, F. Rosowski, R. Horn, Investigation of radial heat transfer in a fixed-bed reactor: CFD simulations and profile measurements, Chem. Eng. J. 317 (2017) 204-214, https://doi.org/10.1016/j.cej.2017.02.063. 
  29. G. Vijaya Kumar, M. Kampili, S. Kelm, K. Arul Prakash, H.-J. Allelein, CFD modelling of buoyancy driven flows in enclosures with relevance to nuclear reactor safety, Nucl. Eng. Des. 365 (2020) 110682, https://doi.org/10.1016/j.nucengdes.2020.110682. 
  30. H.S. Yoo, S.H. Yoo, E.S. Kim, Heat transfer enhancement in dry cask storage for nuclear spent fuel using additive high density inert gas, Ann. Nucl. Energy 132 (2019) 108-118, https://doi.org/10.1016/j.anucene.2019.04.018. 
  31. P. Kumar, G. Chanakya, N. Bartwal, Investigations of non-gray/gray radiative heat transfer effect on natural convection in tall cavities at low operating temperature, Int. Commun. Heat Mass Transfer 125 (2021) 105288, https://doi.org/10.1016/j.icheatmasstransfer.2021.105288. 
  32. A. Dehbi, S. Kelm, J. Kalilainen, H. Mueller, The influence of thermal radiation on the free convection inside enclosures, Nucl. Eng. Des. 341 (2019) 176-185, https://doi.org/10.1016/j.nucengdes.2018.10.025. 
  33. M. Sadegh Motaghedi Barforoush, S. Saedodin, Heat transfer reduction between two finite concentric cylinders using radiation shields: experimental and numerical studies, Int. Commun. Heat Mass Transfer 65 (2015) 94-102, https://doi.org/10.1016/j.icheatmasstransfer.2015.04.014. 
  34. Y.A. Cengel, A.J. Ghajar, Heat and Mass Transfer, fourth ed., McGraw Hill Education, Korea, Korean, 2012, pp. 513-538. ISBN 978-89-6055-246-3. 
  35. Joongoo Jeon, Wonjun Choi, Sung Joong Kim, A flammability limit model for hydrogen-air-diluent mixtures based on heat transfer characteristics in flame propagation, Nucl. Eng. Technol. 51 (2019) 1749-1757, https://doi.org/10.1016/j.net.2019.05.005. 
  36. P.J. Linstrom and W.G. Mallard, Eds., NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/T4D303 (accessed June 16, 2023).. 
  37. G. Cao, S.J. Weber, S.O. Martin, K. Sridharan, M.H. Anderson, T.R. Allen, Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment, J. Nucl. Mater. 441 (2013) 667-673, https://doi.org/10.1016/j.jnucmat.2013.04.083. 
  38. Engineering ToolBox, Emissivity Coefficients Common Products. https://www.engineeringtoolbox.com/emissivity-coefficients-d_447.html (accessed June 08, 2023).. 
  39. Paul Schmitt, Sven Stempfhuber, Nadja Felde, V. Adriana, Szeghalmi, Norbert Kaiser, Andreas Tunnermann, Stefan Schwinde, Influence of seed layers on the reflectance of sputtered aluminum thin films, Opt Express 29 (2021) 19472-19485, https://doi.org/10.1364/OE.428343. 
  40. J. Gu, X. Zhao, F. Ren, H. Wei, S. Liang, C. Geng, H. Guan, X. Zhang, S. Dou, Y. Li, Investigation on solar absorption and thermal emittance of Al films deposited by magnetron sputtering, Coatings 12 (1) (2022) 17, https://doi.org/10.3390/coatings12010017. 
  41. ANSYS, Inc, Ansys Fluent Theory Guide 2021 R2, U.S.A., 2021. http://www.ansys.com. 
  42. Isabel S.O. Barbosa, Ricardo J. Santos, Madalena M. Dias, Joaquim L. Faria, Claudia ' G. Silva, Radiation models for computational fluid dynamics simulations of photocatalytic reactors, Chem. Eng. Technol. 46 (6) (2023) 1059-1077, doi:10.1002/ceat.202200551. 
  43. E.M. Heisler, Exploring alternative designs for solar chimneys using computational fluid dynamics, in: Degree of Master of Science in Mechanical Engineering, Virginia Polytechnic Institute and State University, 2014. URL: https://vtechworks.lib.vt.edu/items/e8db707f-ad4f-4768-9d85-71037b07e656 (accessed: December. 12, 2023). 
  44. Ahmed Amin E. Abdelhameed, Haseeb ur Rehman, Yonghee Kim, A Physics Study for Passively-Autonomous Daily Load-Follow Operation in Soluble-Boron-Free SMR, Proceedings of 2017 international congress on advances in nuclear power plants (ICAPP2017), Fukui and Kyoto, Japan., URL: https://inis.iaea.org/search/search.aspx?orig_q=RN:49033618.. 
  45. M.C. Smith, S. Bate, P.J. Bouchard, Simple benchmark problems for finite element weld residual stress simulation, Proceeding of the ASME 2013 Pressure Vessels and Piping Conference, Paris, France, 2013, doi:10.1115/PVP2013-98033. 
  46. C.S. Kim, Thermophysical properties of stainless steels, United States, ANL, 1975, pp. 1-24. ANL-75-55, doi:10.2172/4152287. 
  47. Xuan Bach Nguyen, Didier Saury, Denis Lemonnier, Coupled natural convection and radiation in a cubic cavity filled with an air-H2O mixture in the presence of a heated obstacle, Prog. Comput. Fluid Dynam. Int. J. 22 (3) (2022) 139-158, https://doi.org/10.1504/PCFD.2021.10042895. 
  48. Michael F. Modest, Sandip Mazumder, Radiative Heat Transfer, fourth ed., Academic Press of Elsevier, ISBN 978-0-323-98406-5, 127-153. 
  49. D.K. Edwards, Absorption by infrared bands of carbon dioxide gas at elevated pressures and temperatures, J. Opt. Soc. Am. 50 (1960) 617-626. URL: https://opg.optica.org/josa/abstract.cfm?uri=josa-50-6-617. 
  50. R.S. Barlow, A.N. Karpetis, J.H. Frank, J.-Y. Chen, Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames, Combust. Flame 127 (3) (2001) 2102-2118, https://doi.org/10.1016/S0010-2180(01)00313-3. 
  51. Grosshandler, W. L., RADCAL: A Narrow-Band Model for Radiation Calculations in a Combustion Environment, NIST Technical Note 1402, United States, (1993). URL: https://nvlpubs.nist.gov/nistpubs/Legacy/TN/nbstechnicalnote1402.pdf.. 
  52. Hongmei Zhang, F. Michael, Modest, Evaluation of the Planck-mean absorption coefficients from HITRAN and HITEMP databases, J. Quant. Spectrosc. Radiat. Transfer 73 (2002) 649-653, https://doi.org/10.1016/S0022-4073(01)00178-9.
  53. M. Ali, A.K. Sharma, Investigation of turbulent natural convection combined with radiation in a square enclosure with a partition, 1st International Conference on Sustainable Materials, Manuf. Energy Technol. (2022) 810-819, https://doi.org/10.2139/ssrn.4159611. 
  54. M.J. Nyaga, Investigating Turbulent Convection in a Rectangular Enclosure Using Shear Stress Transport K-ω Model, Degree of Masters of Science in Applied Mathematics in the School of Pure and Applied Sciences, Kenyatta University, 2020. http://ir-library.ku.ac.ke/handle/123456789/21738 (accessed: June 09, 2023). 
  55. F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (8) (1994) 1598-1605, https://doi.org/10.2514/3.12149. 
  56. S.S. Dua, P. Cheng, Multi-dimensional radiative transfer in non-isothermal cylindrical media with non-isothermal bounding walls, Int. J. Heat Mass Transfer 18 (1975) 245-259, https://doi.org/10.1016/0017-9310(75)90157-X. 
  57. M.Y. Kim, S.W. Baek, Modeling of radiative heat transfer in an axisymmetric cylindrical enclosure with participating medium, J. Quant. Spectrosc. Radiat. Transfer 90 (2005) 377-388, https://doi.org/10.1016/j.jqsrt.2004.04.009. 
  58. M.C.W. Dordevich, Heat transfer analysis of a lab scale solar receiver using the discrete ordinates model (Order No. 1551021), Available from ProQuest Dissertations & Theses Global. (1497024709). Retrieved from URL: https://www.proquest.com/dissertations-theses/heat-transfer-analysis-lab-scale-solar-receiver/docview/1497024709/se-2, 2013. 
  59. K.M. Kim, J. Hwang, S. Wongwises, D. Jerng, H.S. Ahn, Design of A scale-down experimental model for SFR reactor vault cooling system performance analyses, Nucl. Eng. Technol. 52 (2020) 1611-1625, https://doi.org/10.1016/j.net.2020.01.005. 
  60. Y. Bae, S. Hong, Y. Kim, Scaling analysis of PMR200 reactor cavity cooling system, Nucl. Eng. Des. 271 (2014) 523-529, https://doi.org/10.1016/j.nucengdes.2013.12.027. 
  61. Taeseok Kim, Doyoung Shin, Jaemin Lee, Sung Joong Kim, Effect of layer-by-layer assembled carbon nanotube coatings on dropwise condensation heat transfer associated with non-condensable gas effect, Int. J. Heat Mass Tran. 175 (2021) 121345, doi:10.1016/j.ijheatmasstransfer.2021.121345. 
  62. Jae Hyung Park, Jihun Im, Hyo Jun An, Yonghee Kim, Jeong Ik Lee, Sung Joong Kim, Development of an on-demand flooding safety system achieving long-term inexhaustible cooling of small modular reactors employing metal containment vessel, Nucl. Eng. Technol. (2024), doi:10.1016/j.net.2024.02.012. 
  63. Joongoo Jeon, Doyoung Shin; Wonjun Choi, Sung Joong Kim, Identification of the extinction mechanism of lean limit hydrogen flames based on Lewis number effect, Int. J. Heat Mass Tran. 174 (2021) 121288, doi: 10.1016/j.ijheatmasstransfer.2021.121288. 
  64. Yeon Soo Kim, Joongoo Jeon, Chang Hyun Song, Sung Joong Kim, Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model, Nucl. Eng. Technol. 52 (12) (2020) 2836-2846, doi:10.1016/j.net.2020.07.040.