DOI QR코드

DOI QR Code

Research on mechanism of gas leakage in microchannels of steel containment vessels for nuclear power plants

  • Min He (Yantai Research Institute, Harbin Engineering University) ;
  • Yueyao Chen (Yantai Research Institute, Harbin Engineering University) ;
  • Zhen Wu (Yantai Research Institute, Harbin Engineering University) ;
  • Gangling Hou (Yantai Research Institute, Harbin Engineering University) ;
  • Jialong Wang (Yantai Research Institute, Harbin Engineering University) ;
  • Zhuangfei Li (Yantai Research Institute, Harbin Engineering University) ;
  • Yuzhu Wang (Yantai Research Institute, Harbin Engineering University) ;
  • Hanze Li (Yantai Research Institute, Harbin Engineering University)
  • Received : 2023.09.20
  • Accepted : 2024.03.03
  • Published : 2024.08.25

Abstract

Steel containment vessels for nuclear power plants can experience gas leakage due to minute defects such as cracks, corrosion, and aging, leading to gas leakage. A gas leakage model for microchannels is established to elucidate the mechanism underlying gas leakage within microchannels caused by these defects, specifically addressing the issue of unidirectional gas flow. Computational Fluid Dynamics (CFD) and the UK R6 method are employed to calculate the gas leakage rate within microchannels. Furthermore, the characteristics of gas flow within microchannels are explored, including the factors affecting the gas leakage rate. Validation of the calculation results is verified experimentally. The results indicate that the gas mass flow rate exhibits a linear decrease with decreasing internal pressure and a non-linear decline as temperature increases. Additionally, the gas mass flow rate demonstrates a negative correlation with the microchannel length but a positive association to its hydraulic diameter. The primary influencing factors on gas leakage rates are hierarchically ranked as follows: pressure difference, microchannel cross-sectional area, temperature, microchannel length, and microchannel hydraulic diameter.

Keywords

Acknowledgement

This work is supported by the Key R&D Program of Shandong Province, China (Grant No. 2023SFGC0101); the Yantai School-Locality Integration Development Program, China (Grant No. 22MZ03CD012); the Key Research and Development Program of Heilongjiang Province, China (Grant No. 2022ZX01A14); the program of China National Nuclear Corporation, China (Grant No. KY90200210017); the program of Natural Science Foundation of Shandong Province, China (Grant No. ZR2019BEE041).

References

  1. G. Heo, Advancements in probabilistic safety assessment of nuclear energy for sustainability, Energies 15 (2) (2022) 521, https://doi.org/10.3390/en15020521. 
  2. H. Brendel, Energy security: nuclear power versus renewables, Nature 608 (7924) (2022) 667, https://doi.org/10.1038/d41586-022-02239-0. 
  3. Y.T. Yeom, Y.W. Choi, H.J. Kim, H.H. Kim, J.S. Park, S.W. Ryu, et al., Containment liner plate void defect detection technique using phased array ultrasonic testing and acoustic resonance method, Materials 15 (4) (2022) 1330, https://doi.org/10.3390/ma15041330. 
  4. C.S. Cho, W.H. Chung, S.Y. Kuo, Measurement and analysis of the leak tightness of reactor containment vessels: experiences and results, Nucl. Eng. Des. 292 (2015) 112-122, https://doi.org/10.1016/j.nucengdes.2015.06.003. 
  5. N. Sakaba, K. Iigaki, M. Kondo, K.J. Emori, Leak-tightness characteristics concerning the containment structures of the HTTR, Nucl. Eng. Des. 233 (1-3) (2004) 135-145, https://doi.org/10.1016/j.nucengdes.2004.08.023. 
  6. M.A. Tries, L.M. Bobek, A proposed method for the determination of leakage rate for a reactor containment vessel, Nucl. Technol. 145 (3) (2004) 319-323, https://doi.org/10.13182/Nt04-A3481. 
  7. L. Jae Yong, S. Chang Ho, K. Jong Kyung, New Strategy to Determine Batch Size of the Batch Method for Real Variance Estimation in the Monte Carlo Eigenvalue Calculations, Transactions of the Korean Nuclear Society Spring Meeting, 2018. 
  8. S.P. Narayanam, A. Kumar, S. Sen, U. Pujala, V. Subramanian, C.V. Srinivas, et al., Experimental measurements and theoretical simulation of sodium combustion aerosol leakage through capillaries, Prog. Nucl. Energy 118 (2020) 103111, https://doi.org/10.1016/j.pnucene.2019.103111. 
  9. H.-C. Kima, S.K. Pak, J.S. Lee, K.Y. Chung, S.O.J.S. Yu, Thermal stratification during atmospheric stabilization in a containment leakage rate test, Saf. Now. 5 (6) (2018) 7-8. 
  10. D. Rossat, D.-M. Bouhjiti, J. Baroth, M. Briffaut, F. Dufour, A. Monteil, et al., A Bayesian strategy for forecasting the leakage rate of concrete containment buildings-Application to nuclear containment buildings, Nucl. Eng. Des. 378 (2021) 111184, https://doi.org/10.1016/j.nucengdes.2021.111184. 
  11. D. Rossat, J. Baroth, M. Briffaut, F. Dufour, B. Masson, A. Monteil, et al., Bayesian updating for nuclear containment buildings using both mechanical and hydraulic monitoring data, Eng. Struct. 262 (2022) 114294, https://doi.org/10.1016/j.engstruct.2022.114294. 
  12. H. Wang, J.Q. Liu, G.Y. Xie, X.P. Zhong, X.Q. Fan, A method of containment leakage rate estimation based on convolution neural Network, Front. Energy Res. 9 (2021) 637283, https://doi.org/10.3389/fenrg.2021.637283. 
  13. S. Takahashi, A. Tamura, S. Sato, T. Goto, M. Kurosaki, N. Takamura, et al., Flow-induced vibrations in closed side branch pipes and their attenuation methods, J. Nucl. Sci. Technol. 53 (8) (2016) 1164-1177, https://doi.org/10.1080/00223131.2015.1096217. 
  14. F.L. Niu, X.C. Du, H.B. Qi, M.Q. Yi, X. Yang, Modeling analyses of radioactive aerosol flow and collection in mesoscopic impactor filters, Prog. Nucl. Energy 88 (2016) 147-155, https://doi.org/10.1016/j.pnucene.2015.12.010. 
  15. N. Yusof, A.S. Mohd Rafie, M. Ariffin, N. Othman, Computational analysis of the groove effect to reduce the cavitation in ball valves, Appl. Mech. Mater. 629 (2014) 414-419. https://doi.org/10.4028/www.scientific.net/AMM.629.414. 
  16. H. Yang, X.-F. Yao, S. Wang, L. Yuan, Y.-C. Ke, Y.-H. Liu, Simultaneous determination of gas leakage location and leakage rate based on local temperature gradient, Measurement 133 (2019) 233-240, https://doi.org/10.1016/j.measurement.2018.10.017. 
  17. M. Zemann, N. Herrmann, F. Dehn, Leckageverhalten von gerissenem Beton-eine mehrskalige Betrachtung, Beton-und Stahlbetonbau 114 (12) (2019) 929-937, https://doi.org/10.1002/best.201900057. 
  18. J. Ishimoto, T. Sato, A. Combescure, Computational approach for hydrogen leakage with crack propagation of pressure vessel wall using coupled particle and Euler method, Int. J. Hydrogen Energy 42 (15) (2017) 10656-10682, https://doi.org/10.1016/j.ijhydene.2017.01.161. 
  19. H.C. Kim, S.K. Pak, J.S. Lee, S.W. Cho, Validation of the MELCOR input model for a CANDU PHWR containment analysis by benchmarking against integrated leakage rate tests, Nucl. Eng. Des. 340 (2018) 201-218, https://doi.org/10.1016/j.nucengdes.2018.09.022. 
  20. V. Shariati, E. Roohi, A. Ebrahimi, Numerical study of gas flow in super nanoporous materials using the direct simulation Monte-Carlo method, Micromachines 14 (1) (2023) 139, https://doi.org/10.3390/mi14010139. 
  21. A. Ebrahimi, V. Shahabi, E. Roohi, Pressure-driven nitrogen flow in divergent microchannels with isothermal walls, Appl. Sci. 11 (8) (2021) 3602, https://doi.org/10.3390/app11083602. 
  22. A. Ebrahimi, E. Roohi, DSMC investigation of rarefied gas flow through diverging micro-and nanochannels, Microfluid. Nanofluidics 21 (2) (2017) 18, https://doi.org/10.1007/s10404-017-1855-1. 
  23. Q. He, S. Tao, X. Yang, et al., Discrete unified gas kinetic scheme simulation of microflows with complex geometries in Cartesian grid, Phys. Fluids 33 (4) (2021) 042005, https://doi.org/10.1063/5.0040850. 
  24. R. Garg, A. Agrawal, Poiseuille number behavior in an adiabatically choked microchannel in the slip regime, Phys. Fluids 32 (11) (2020) 112002, https://doi.org/10.1063/5.0023929. 
  25. V. Varade, V.S. Duryodhan, A. Agrawal, et al., Low Mach number slip flow through diverging microchannel, Comput. Fluids 111 (2015) 46-61, https://doi.org/10.1016/j.compfluid.2014.12.024. 
  26. P.A. Kew, K. Cornwell, Correlations for the prediction of boiling heat transfer in small-diameter channels, Appl. Therm. Eng. 17 (8-10) (1997) 705-715, https://doi.org/10.1016/S1359-4311(96)00071-3. 
  27. K.A. Triplett, S. Ghiaasiaan, S. Abdel-Khalik, D. Sadowski, Gas-liquid two-phase flow in microchannels Part I: two-phase flow patterns, Int. J. Multiphas. Flow 25 (3) (1999) 377-394, https://doi.org/10.1016/S0301-9322(98)00054-8. 
  28. H. Herwig, Flow and heat transfer in micro systems: is everything different or just smaller? Z. Angew. Math. Mech. 82 (9) (2002) 579-586, https://doi.org/10.1002/1521-4001(200209)82:9<579::Aid-Zamm579>3.0.Co;2-V. 
  29. J.P. Taggart, P.J. Budden, Leak before break: studies in support of new R6 guidance on leak rate evaluation, J Press Vess-T Asme 130 (1) (2008) 011402, https://doi.org/10.1115/1.2826422. 
  30. S.B.M. Beck, N.M. Bagshaw, J.R. Yates, Explicit equations for leak rates through narrow cracks, Int. J. Pres. Ves. Pip. 82 (7) (2005) 565-570, https://doi.org/10.1016/j.ijpvp.2004.12.005. 
  31. IAEA, Applicability of the Leak before Break Concept, IAEA, Austria, 1993. 
  32. B. Button, A. Grogan, T. Chivers, P. Manning, Gas flow through cracks, J. Fluid Eng. 100 (4) (1978) 453-458, https://doi.org/10.1115/1.3448707. 
  33. S.-H. Kim, A study on evaluation of ultimate internal pressure capacity of CANDU-ype nuclear containment buildings, J Comput Struct Eng Inst Korea 24 (3) (2011) 343-351. 
  34. Z.F. Wang, J.C. Yan, Y.Z. Lin, T. Fang, J.L. Ma, Study on failure mechanism of prestressed concrete containments following a loss of coolant accident, Eng. Struct. 202 (2020) 109860, https://doi.org/10.1016/j.engstruct.2019.109860.