DOI QR코드

DOI QR Code

Ship-Borne Global Navigation Satellite System (GNSS) for Ionospheric Total Electron Content Monitoring: Preliminary Results from ISABU Experiments

선박 GNSS(Global Navigation Satellite System) 자료를 사용한 전리권 정보 산출 실험: 이사부호 초기 결과

  • Dong-Hyo Sohn (Korea Astronomy and Space Science Institute) ;
  • Byung-Kyu Choi (Korea Astronomy and Space Science Institute) ;
  • Junseok Hong (Korea Astronomy and Space Science Institute) ;
  • Gyeong Mok Lee (Korea Institute of Ocean Science and Technology) ;
  • Woo Kyoung Lee (Korea Astronomy and Space Science Institute) ;
  • Jong-Kyun Chung (Korea Astronomy and Space Science Institute) ;
  • Yosup Park (Korea Institute of Ocean Science and Technology)
  • 손동효 (한국천문연구원) ;
  • 최병규 (한국천문연구원) ;
  • 홍준석 (한국천문연구원) ;
  • 이경목 (한국해양과학기술원) ;
  • 이우경 (한국천문연구원) ;
  • 정종균 (한국천문연구원) ;
  • 박요섭 (한국해양과학기술원)
  • Received : 2024.07.03
  • Accepted : 2024.08.21
  • Published : 2024.08.31

Abstract

In this study, we calculated total electron content (TEC) using ship-borne global navigation satellite system (GNSS) observations and validated the results by comparing the ground-based TEC. GNSS is an effective tool for monitoring the ionosphere as it allows 24-hour observations, is low cost, and is easy to install. However, most GNSS stations are located on land, which leads to a lack of data from the ocean. Therefore, we conducted an experiment collecting GNSS data in the ocean by installing GNSS observation systems aboard the research vessel 'ISABU', operated by the Korea Institute of Ocean Science and Technology. We estimated TEC using GNSS data from July 30 to August 24, 2021. From the results, we confirmed daily and latitudinal variations of TEC as expected. Additionally, we compared the results with TEC derived from nearby ground-based GNSS stations and then verified similar variations. Based on these results, we plan to research ionospheric climatology using long-term data and assess its potential for ongoing ionospheric monitoring.

이 연구에서는 선박에 설치한 GNSS(Global Navigation Satellite System) 관측시스템 자료를 사용해 전리권 전자밀도(total electron content, TEC)를 산출하고 지상 GNSS 자료에서 산출한 TEC와 비교하여 결과를 검증하였다. GNSS는 24시간 관측할 수 있고 비용이 상대적으로 저렴하며 설치가 쉬워 전리권의 변화를 감시하는데 좋은 관측시스템이다. 그러나 대부분의 GNSS 관측소가 육지에 있어 바다에서 관측한 정보가 부족한 실정이다. 따라서 이 연구에서는 한국해양과학기술원에서 운영하는 연구실험선 '이사부호'에 GNSS 관측시스템을 설치해 전리권 전자밀도를 산출하는 실험을 진행하였다. 2021년 7월 30일부터 8월 24일까지 수집한 GNSS 자료를 사용해 TEC를 산출하였고, 예상된 전리권 일변화와 위도에 따른 특성을 확인하였다. 또한, 인근 지상 GNSS 자료를 사용하여 산출한 TEC과 비교해 비슷한 변화경향이 나타남을 확인하였다. 이 초기 결과를 바탕으로 장기간 수집한 자료를 사용해 전리권 특성을 연구하고 전리권 감시에 활용할 수 있는지 분석할 예정이다.

Keywords

Acknowledgement

This research was partly supported by the Korea Astronomy and Space Science Institute under the R&D program (Project No. 2024-1-9-0201) supervised by the Ministry of Science and ICT. This work was also partly supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science and ICT) (No. 2021R1C1C2008774). We thank all participants of the cruises and the crews of R/V ISABU of the KIOST for their assistance during the in-situ observations.

References

  1. Lee C, Lee WK, Ionospheric and upper atmospheric observations in Korea, J. Space Technol. Appl. 1, 199-216 (2021). https://doi.org/10.52912/jsta.2021.1.2.199 
  2. Giannattasio F, Ionosphere monitoring with remote sensing, Remote Sens. 14, 5325 (2022). https://doi.org/10.3390/rs14215325 
  3. Gebre-Egziabher D, Gleason S, GNSS Applications and Methods (Artech House, Boston, MA, 2009). 
  4. Schaer S, Beutler G, Mervart L, Rothacher M, Wild U, Global and regional ionosphere models using the GPS double difference phase observable, in IGS Workshop, Potsdam, Germany, 15-17 May 1995. 
  5. Mannucci AJ, Wilson BD, Yuan DN, Ho CH, Lindqwister UJ, et al., A global mapping technique for GPS-derived ionospheric total electron content measurements, Radio Sci. 33, 565-582 (1998). https://doi.org/10.1029/97RS02707 
  6. International GNSS Service [IGS], Ionosphere (2024) [Internet], viewed 2024 Jun 24, available from: https://igs.org/wg/ionosphere/ 
  7. Jee G, Lee HB, Kim YH, Chung JK, Cho J, Assessment of GPS global ionosphere maps (GIM) by comparison between CODE GIM and TOPEX/Jason TEC data: ionospheric perspective, J. Geophys. Res. 115, A10319 (2010). https://doi.org/10.1029/2010JA015432 
  8. International Maritime Organization [IMO], Introduction to IMO (2024) [Internet], viewed 2024 Jun 20, available from: https://www.imo.org/en/About/Pages/Default.aspx 
  9. Smith SR, Alory G, Andersson A, Asher W, Baker A, et al., Ship-based contributions to global ocean, weather, and climate observing systems, Front. Mar. Sci. 6, 434 (2019). https://doi.org/10.3389/fmars.2019.00434 
  10. MarineTraffic, The MarineTraffic definition of ship tracking (2024) [Internet], viewed 2024 Jun 21, available from: https://www.marinetraffic.com/blog/the-marinetraffic-definition-of-ship-tracking/ 
  11. Korea Institute of Ocean Science and Technology [KIOST], Annual report 2023 (2024), [Internet] viewed 2024 Jun 24, available from: https://www.kiost.ac.kr/eng/sub03_03_01.do 
  12. Misra P, Enge P, Global Positioning System: Signals, Measurements, and Performance (Ganga-Jamuna Press, Lincoln, MA, 2012). 
  13. Mukesh R, Soma P, Karthikeyan V, Sindhu P, Prediction of ionospheric vertical total electron content from GPS data using ordinary kriging-based surrogate model, Astrophys. Space Sci. 364, 15 (2019). https://doi.org/10.1007/s10509-019-3502-7 
  14. Sohn DH, Choi BK, Park Y, Kim YC, Ku B, Precipitable water vapor retrieval from shipborne GNSS observations on the Korean Research Vessel ISABU, Sensors. 20, 4261 (2020). https://doi.org/10.3390/s20154261