DOI QR코드

DOI QR Code

Experimental and numerical investigation on low-velocity impact behaviour of thin hybrid carbon/aramid composite

  • Sojan Andrews Zachariah (Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education) ;
  • Dayananda Pai K (Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education) ;
  • Padmaraj N H (Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education) ;
  • Satish Shenoy Baloor (Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education)
  • Received : 2023.08.13
  • Accepted : 2024.08.20
  • Published : 2024.10.25

Abstract

Hybrid composite materials are widely used in various load-bearing structural components of micro - mini UAVs. However, the design of thin laminates for better impact resistance remains a challenge, despite the strong demand for lightweight structures. This work aims to assess the low-velocity impact (LVI) behaviour of thin quasi-isotropic woven carbon/ aramid epoxy hybrid laminates using experimental and numerical techniques. Drop tower impact test with 10 J and 15 J impact energies is performed on carbon/epoxy laminates having aramid layers at different sequences and locations. The impact behaviour is experimentally evaluated using force-time, force-deformation, and energy-time histories considering delamination threshold load, peak load, and laminate deflection. Ultrasonic C-scan is performed on the post-impact samples to analyse the insidious damage profile at different impact energies. The experimental data is further utilized to numerically simulate LVI behaviour by employing the representative volume element model. The numerical results are in good agreement with the experimental data. Numerical and experimental approach predicts that the hybrid laminates with aramid layers at both impact and non-impact sides of the laminate exhibits significant improvement in the overall impact behaviour by having a subcritical damage morphology compared to carbon/epoxy laminate. A combined numerical-experimental approach is proposed for evaluating the effective impact performance.

Keywords

Acknowledgement

The authors would like to acknowledge the facility support from the Department of Aeronautical and Automobile Engineering, Manipal Institute of Technology (MIT), MAHE, Manipal.

References

  1. Abdallah, E.A., Bouvet, C., Rivallant, S., Broll, B. and Barrau, J.J. (2009), "Experimental analysis of damage creation and permanent indentation on highly oriented plates", Compos. Sci. Technol., 69 (7-8), 1238-1245. https://doi.org/10.1016/j.compscitech.2009.02.029.
  2. Andrews Zachariah, S., Dayananda, P.K., Padmaraj, N.H. and Shenoy, B.S. (2024), "An analogy of RVE-based numerical model and experimental study of Charpy impact on thin carbon/aramid hybrid composites for micro/mini-Belly landing UAV fuselage", Cogent Eng., 11(1), 2363465. https://doi.org/10.1080/23311916.2024.2363465.
  3. Andrews Zachariah, S., Satish Shenoy, B., Jayan, J. and Pai, K.D. (2022), "Experimental investigation on dynamic and static transverse behaviour of thin woven Carbon/Aramid hybrid laminates", J. King Saud Univ. Eng. Sci., 34(4), 273-281. https://doi.org/10.1016/j.jksues.2020.09.015.
  4. ASTM D7136/D7136M (2007), Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event, ASTM International, West Conshohocken, PA, USA.
  5. Bandaru, A.K., Patel, S., Ahmad, S. and Bhatnagar, N. (2018), "An experimental and numerical investigation on the low velocity impact response of thermoplastic hybrid composites", J. Compos. Mater., 52(7), 877-889. https://doi.org/10.1177/0021998317714043.
  6. Berk, B., Karakuzu, R. and Toksoy, A.K. (2017), "An experimental and numerical investigation on ballistic performance of advanced composites", J. Compos. Mater., 51(25), 3467-3480. https://doi.org/10.1177/0021998317691810.
  7. Bhudolia, S.K. and Joshi, S.C. (2018), "Low-velocity impact response of carbon fibre composites with novel liquid Methylmethacrylate thermoplastic matrix", Compos. Struct., 203, 696-708. https://doi.org/10.1016/j.compstruct.2018.07.066.
  8. Bulut, M. and Erklig, A. (2018), "An experimental investigation on damage characteristics of laminated hybrid composites subjected to low velocity impact", Polym. Compos., 39(9), 3129-3139. https://doi.org/10.1002/pc.24319.
  9. Condruz, M.R., Paraschiv, A., Deutschlander, A. and Mindru, I. (2020), "Assessment of GFRP mechanical properties in order to determinate suitability for UAV components", Key Eng. Mater., 834, 57-66. https://doi.org/10.4028/www.scientific.net/KEM.834.57.
  10. Denning, K. (2004), "Design, construction, and testing of a high-speed, light-weighted UAV", AIAA 3rd "Unmanned Unlimited" Technical Conference, Workshop and Exhibit, Chicago, IL, USA, September.
  11. Dixit, A., Mali, H.S. and Misra, R.K. (2013), "Unit cell model of woven fabric textile composite for multiscale analysis", Procedia Eng., 68, 352-358. https://doi.org/10.1016/j.proeng.2013.12.191.
  12. Dong, Z. and Sun, C.T. (2009), "Testing and modeling of yarn pull-out in plain woven Kevlar fabrics", Compos. Part A: Appl. Sci. Manuf., 40(12), 1863-1869. https://doi.org/10.1016/j.compositesa.2009.04.019.
  13. Evci, C. and Gulgec, M. (2012), "An experimental investigation on the impact response of composite materials", Int. J. Impact Eng., 43, 40-51. https://doi.org/10.1016/j.ijimpeng.2011.11.009.
  14. Fischer, B., Sarasini, F., Tirillo, J., Touchard, F., Chocinski-Arnault, L., Mellier, D., Panzer, N., Sommerhuber, R., Russo, P., Papa, I., Lopresto, V. and Ecault, R. (2019), "Impact damage assessment in biocomposites by micro-CT and innovative air-coupled detection of laser-generated ultrasound", Compos. Struct., 210, 922-931. https://doi.org/10.1016/j.compstruct.2018.12.013.
  15. Fotouhi, M., Jalalvand, M. and Wisnom, M.R. (2017), "High performance quasi-isotropic thin-ply carbon/glass hybrid composites with pseudo-ductile behaviour in all fibre orientations", Compos. Sci. Technol., 152, 101-110. https://doi.org/10.1016/j.compscitech.2017.08.024.
  16. Gustin, J., Joneson, A., Mahinfalah, M. and Stone, J. (2005), "Low velocity impact of combination Kevlar/carbon fiber sandwich composites", Compos. Struct., 69(4), 396-406. https://doi.org/10.1016/j.compstruct.2004.07.020.
  17. Hashim, N., Majid, D.L., Uda, N., Zahari, R. and Yidris, N. (2017), "Vacuum infusion method for woven carbon/Kevlar reinforced hybrid composite", IOP Conf. Ser.: Mater. Sci. Eng., 270, 012021. https://doi.org/10.1088/1757-899X/270/1/012021.
  18. Huang, C., Cui, L., Liu, Y., Xia, H., Qiu, Y. and Ni, Q.Q. (2021), "Low-velocity drop weight impact behavior of Twaron® fabric investigated using experimental and numerical simulations", Int. J. Impact Eng., 149, 103796. https://doi.org/10.1016/j.ijimpeng.2020.103796.
  19. Icten, B.M., Atas, C., Aktas, M. and Karakuzu, R. (2009), "Low temperature effect on impact response of quasi-isotropic glass/epoxy laminated plates", Compos. Struct., 91(3), 318-323. https://doi.org/10.1016/j.compstruct.2009.05.010.
  20. Karahan, M. and Karahan, N. (2014), "Effect of weaving structure and hybridization on the low-velocity impact behavior of woven carbon-epoxy composites", Fibres Text. East. Eur., 22(3), 109-115.
  21. Karahan, M. and Yildirim, K. (2015), "Low velocity impact behaviour of aramid and UHMWPE composites", Fibres Text. East. Eur., 23(3), 97-105. https://doi.org/10.5604/12303666.1152522.
  22. Karahan, M., Karahan, N., Nasir, M.A. and Nawab, Y. (2019), "Effect of structural hybridization on ballistic performance of aramid fabrics", J. Thermoplast. Compos. Mater., 32(6), 795-814. https://doi.org/10.1177/0892705718780197.
  23. Katnam, K.B., Dalfi, H. and Potluri, P. (2019), "Towards balancing in-plane mechanical properties and impact damage tolerance of composite laminates using quasi-UD woven fabrics with hybrid warp yarns", Compos. Struct., 225, 111083. https://doi.org/10.1016/j.compstruct.2019.111083.
  24. Kumar Jha, A., Sathyamoorthy, S. and Prakash, V. (2019), "Bird strike damage and analysis of UAV's airframe", Procedia Struct. Integr., 14, 416-428. https://doi.org/10.1016/j.prostr.2019.05.051.
  25. Lin, S. and Waas, A.M. (2021), "Accelerating computational analyses of low velocity impact and compression after impact of laminated composite materials", Compos. Struct., 260, 113456. https://doi.org/10.1016/j.compstruct.2020.113456.
  26. Mahmoud, B., Manseri, L., Rogani, A., Navarro, P., Marguet, S., Ferrero, J.F. and Tawk, I. (2019), "Experimental and numerical study of the damage mechanisms in hybrid unidirectional/woven composites under impact loading", Compos. Struct., 209, 606-615. https://doi.org/10.1016/j.compstruct.2018.10.098.
  27. Marom, G., Drukker, E., Weinberg, A. and Banbaji, J. (1986), "Impact behaviour of carbon/Kevlar hybrid composites", Compos., 17(2), 150-153. https://doi.org/10.1016/0010-4361(86)90253-3.
  28. Matadi Boumbimba, R., Coulibaly, M., Khabouchi, A., Kinvi-Dossou, G., Bonfoh, N. and Gerard, P. (2017), "Glass fibres reinforced acrylic thermoplastic resin-based tri-block copolymers composites: Low velocity impact response at various temperatures", Compos. Struct., 160, 939-951. https://doi.org/10.1016/j.compstruct.2016.10.127.
  29. Micheli, D., Vricella, A., Pastore, R., Delfini, A., Giusti, A., Albano, M., Marchetti, M., Moglie, F. and Primiani, V.M. (2016), "Ballistic and electromagnetic shielding behaviour of multifunctional Kevlar fiber reinforced epoxy composites modified by carbon nanotubes", Carbon, 104, 141-156. https://doi.org/10.1016/j.carbon.2016.03.059.
  30. Naghdinasab, M., Farrokhabadi, A. and Madadi, H. (2018), "A numerical method to evaluate the material properties degradation in composite RVEs due to fiber-matrix debonding and induced matrix cracking", Finite Elem. Anal. Des., 146, 84-95. https://doi.org/10.1016/j.finel.2018.04.008.
  31. Naik, N.K., Chandra Sekher, Y. and Meduri, S. (2000), "Damage in woven-fabric composites subjected to low-velocity impact", Compos. Sci. Technol., 60(5), 731-744. https://doi.org/10.1016/S0266-3538(99)00183-9.
  32. Nayak, S.Y., Shenoy, S., Hameed Sultan, M.T., Kini, C.R., Seth, A., Prabhu, S. and Safri, S.N.A. (2021), "Effect of CNT-based resin modification on the mechanical properties of polymer composites", Front. Mater., 7, 609010. https://doi.org/10.3389/fmats.2020.609010.
  33. Nugroho, G., Pranoto, I. and Rohmana, N.Z. (2018), "Effect of breather type and vacuum pressure on the manufacturing of an unmanned aerial vehicle fuselage using vacuum bagging method", AIP Conf. Proc., 1983(1), 040005. https://doi.org/10.1063/1.5046262.
  34. Padmaraj, N.H., Vijaya, K.M. and Dayananda, P. (2021), "Experimental investigation on fatigue behaviour of glass/epoxy quasi-isotropic laminate composites under different ageing conditions", Int. J. Fatigue, 143, 105992. https://doi.org/10.1016/j.ijfatigue.2020.105992.
  35. Panettieri, E., Fanteria, D., Montemurro, M. and Froustey, C. (2016), "Low-velocity impact tests on carbon/epoxy composite laminates: A benchmark study", Compos. Part B: Eng., 107, 9-21. https://doi.org/10.1016/j.compositesb.2016.09.057.
  36. Papakaliatakis, G. and Karalekas, D. (2010), "Damage growth by debonding in a single fibre metal matrix composite: Elastoplasticity and strain energy density criterion", Theoret. Appl. Fract. Mech., 53(2), 152-157. https://doi.org/10.1016/j.tafmec.2010.03.005.
  37. Pigazzini, M.S., Bazilevs, Y., Ellison, A. and Kim, H. (2018), "Isogeometric analysis for simulation of progressive damage in composite laminates", J. Compo. Mater., 52(25), 3471-3489. https://doi.org/10.1177/0021998318770723.
  38. Priyanka, P., Dixit, A. and Mali, H. S. (2017), "high-strength hybrid textile composites with carbon, kevlar, and e-glass fibers for impact-resistant structures: A review", Mech. Compos. Mater., 53(5), 685-704. https://doi.org/10.1007/s11029-017-9696-2.
  39. PS, R. and Jeyan, M.L. (2020), "Mini unmanned aerial systems (UAV) - A review of the parameters for classification of a mini UAV", Int. J. Aviat. Aeronaut. Aerosp., 7(3), 5. https://doi.org/10.15394/ijaaa.2020.1503.
  40. Rayhan, S.B. and Rahman, M.M. (2020), "Modeling elastic properties of unidirectional composite materials using ansys material designer", Procedia Struct. Integr., 28, 1892-1900. https://doi.org/10.1016/j.prostr.2020.11.012.
  41. Sarasini, F. (2017), "Low-velocity impact behaviour of hybrid composites", Hybrid Polymer Composite Materials, Woodhead Publishing, Cambridge, UK.
  42. Schoeppner, G.A. and Abrate, S. (2000), "Delamination threshold loads for low velocity impact on composite laminates", Compos. Part A: Appl. Sci. Manuf., 31(9), 903-915. https://doi.org/10.1016/S1359-835X(00)00061-0.
  43. Shaker, K., Jabbar, A., Karahan, M., Karahan, N. and Nawab, Y. (2017), "Study of dynamic compressive behaviour of aramid and ultrahigh molecular weight polyethylene composites using Split Hopkinson Pressure Bar", J. Compos. Mater., 51(1), 81-94. https://doi.org/10.1177/002199831663524.
  44. Shi, Y., Swait, T. and Soutis, C. (2012), "Modelling damage evolution in composite laminates subjected to low velocity impact", Compos. Struct., 94(9), 2902-2913. https://doi.org/10.1016/j.compstruct.2012.03.039.
  45. Soetanto, M.F. and Tritjahjono, R.I. (2016), "Study the strength of material and composite structures of belly-landing mini UAV", Appl. Mech. Mater., 842, 178-185. https://doi.org/10.4028/www.scientific.net/AMM.842.178.
  46. Soliman, E.M., Sheyka, M.P. and Taha, M.R. (2012), "Low-velocity impact of thin woven carbon fabric composites incorporating multi-walled carbon nanotubes", Int. J. Impact Eng., 47, 39-47. https://doi.org/10.1016/j.ijimpeng.2012.03.002.
  47. Sorensen, B.F. (2017), "Micromechanical model of the single fiber fragmentation test", Mech. Mater., 104, 38-48. https://doi.org/10.1016/j.mechmat.2016.10.002.
  48. Sun, X.C. and Hallett, S.R. (2017), "Barely visible impact damage in scaled composite laminates: Experiments and numerical simulations", Int. J. Impact Eng., 109, 178-195. https://doi.org/10.1016/j.ijimpeng.2017.06.008.
  49. Troiani, E., Falaschetti, M.P., Taddia, S. and Ceruti, A. (2015), "CFRP crash absorbers in small UAV: Design and optimization", SAE Technical Paper No. 2015-01-2461; SAE International, Warrendale, PA, USA.
  50. Vachon, P.L., Brailovski, V. and Terriault, P. (2013), "Impact-induced damage and damage propagation under flexural load in TiNi and Kevlar-stitched carbon/epoxy laminates", Compos. Struct., 100, 424-435. https://doi.org/10.1016/j.compstruct.2013.01.011.
  51. Valenca, S.L., Griza, S., de Oliveira, V.G., Sussuchi, E.M. and de Cunha, F.G.C. (2015), "Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric", Compos. Part B: Eng., 70, 1-8. https://doi.org/10.1016/j.compositesb.2014.09.040.
  52. van Oosterom, S., Allen, T., Battley, M. and Bickerton, S. (2019), "An objective comparison of common vacuum assisted resin infusion processes", Compos. Part A: Appl. Sci. Manuf., 125, 105528. https://doi.org/10.1016/j.compositesa.2019.105528.
  53. Verma, A.K., Pradhan, N.K., Nehra, R. and Prateek (2018), "Challenge and advantage of materials in design and fabrication of composite UAV", IOP Conf. Ser.: Mater. Sci. Eng., 455(1), 012005. https://doi.org/10.1088/1757-899X/455/1/012005.
  54. Vieille, B., Casado, V.M. and Bouvet, C. (2013), "About the impact behavior of woven-ply carbon fiber-reinforced thermoplastic- and thermosetting-composites: A comparative study", Compos. Struct., 101, 9-21. https://doi.org/10.1016/j.compstruct.2013.01.025.
  55. Yang, B., Wang, Z., Zhou, L., Zhang, J. and Liang, W. (2015), "Experimental and numerical investigation of interply hybrid composites based on woven fabrics and PCBT resin subjected to low-velocity impact", Compos. Struct., 132, 464-476. https://doi.org/10.1016/j.compstruct.2015.05.069.
  56. Yang, S., Chalivendra, V.B. and Kim, Y.K. (2017), "Fracture and impact characterization of novel auxetic Kevlar®/Epoxy laminated composites", Compos. Struct., 168, 120-129. https://doi.org/10.1016/j.compstruct.2017.02.034.
  57. Ying, S., Mengyun, T., Zhijun, R., Baohui, S. and Li, C. (2017), "An experimental investigation on the low-velocity impact response of carbon-aramid/epoxy hybrid composite laminates", J. Reinforced Plast.
  58. Compos., 36(6), 422-434. https://doi.org/10.1177/0731684416680893. Zachariah, S., Shenoy, S. and Pai, D. (2024), "Experimental analysis of the effect of the woven aramid fabric on the strain to failure behavior of plain weaved carbon/aramid hybrid laminates", Facta Univ. Ser.: Mech. Eng., 22(1), 13-24. https://doi.org/10.22190/FUME200819022Z.
  59. Zachariah, S.A., Shenoy, B.S. and Pai, K.D. (2021), "Comprehensive analysis of in-plane tensile characteristics of thin carbon/aramid hybrid composites using experimental and RVE- based numerical study", Compos. Struct., 271, 114160. https://doi.org/10.1016/j.compstruct.2021.114160.
  60. Zahran, M. and Abdelwahab, M. (2019), "Crash analysis of UAV hybrid composite fuselage structure under different impact conditions", Mater. Sci. Forum, 953, 88-94. https://doi.org/10.4028/www.scientific.net/MSF.953.88.