References
- Al-Sibahy, A. and Edwards, R. (2021), "Effect of chases with renovation techniques on the load carrying capacity of masonry walls", Infrastr., 6, 160. https://doi.org/10.3390/infrastructures6110160.
- ASTM C1314-09 (2015), Standard Test Method for Compressive Strength of Masonry Prisms, ASTM International, West Conshohocken, PA, USA.
- British Standard EN 1996-1-1 (2005), Eurocode 6: Design of Masonry Structures - Part 1-1: General Rules for Reinforced and Unreinforced Masonry Structures, The British Standards Institution, London, UK.
- Banerjee, S., Nayak, S. and Das, S. (2019), "Enhancing the flexural behaviour of masonry wallet using PP band and steel wire mesh", Constr. Build. Mater., 194, 179-191. https://doi.org/10.1016/j.conbuildmat.2018.11.001.
- Bhosale, A., Zade, N.P., Davis, R. and Sarkar, P. (2019), "Experimental investigation of autoclaved aerated concrete masonry", J. Mater. Civil Eng., 31(7), 04019109. https://doi.org/10.1061/(asce)mt.1943-5533.0002762.
- Costigan, A. and Pavia, S. (2009), "Compressive, flexural and bond strength of brick/lime mortar masonry", Proceedings of PROHITEC 09, Rome, Italy, June.
- de Medeiros, G.F., Mohamad, G., Kosteski, L.E., Rodriguez, R.Q. and Milani, A.S. (2022a), "Strength capacity of hollow clay blocks structural masonry - Flange, Chases, and slenderness effects", Eng. Struct., 272, 114943. https://doi.org/10.1016/j.engstruct.2022.114943.
- de Medeiros, G.F., Milani, A.S., Lubeck, A., Mohamad, G., Rodriguez, R.Q. and Kosteski, L.E. (2022b), "Numerical analysis of masonry walls with horizontal chases using the Lattice Discrete element method (LDEM)", Eng. Struct., 253, 113647. https://doi.org/10.1016/j.engstruct.2021.113647.
- Eurocode 6. EN 1996-1-1 (2005), Design of Masonry Structures - Part 1-1: Common Rules for Reinforced and Unreinforced Masonry Structures, Brussels, Belgium.
- Ferretti, D. and Michelini, E. (2021), "The effect of density on the delicate balance between structural requirements and environmental issues for AAC blocks: An experimental investigation", Sustain., 13(13186), 1-21. https://doi.org/10.3390/su132313186.
- Ferretti, D., Michelini, E. and Rosati, G. (2015), "Mechanical characterization of autoclaved aerated concrete masonry subjected to in-plane loading: Experimental investigation and FE modeling", Constr. Build. Mater., 98, 353-365. https://doi.org/10.1016/j.conbuildmat.2015.08.121.
- Gumaste, K.S., Nanjunda Rao, K.S., Venkatarama Reddy, B.V. and Jagadish, K.S. (2007), "Strength and elasticity of brick masonry prisms and wallettes under compression", Mater. Struct., 40, 241-253. https://doi.org/10.1617/s11527-006-9141-9.
- Hendry, E.A.W. (2001), "Masonry walls: Materials and construction", Constr. Build. Mater., 15, 323-330. https://doi.org/10.1016/S0950-0618(01)00019-8.
- IS 14858 (2000), Requirements for Compression Testing Machine Used for Testing of Concrete and Mortar, Bureau of Indian Standards (BIS), New Delhi, India.
- IS 1905 (1987), Code of Practice for Structural Use of Unreinforced Masonry, Bureau of Indian Standards (BIS), New Delhi, India.
- IS 383 (1970), Specification for Coarse and Fine Aggregates From Natural Sources for Concrete, Bureau of Indian Standards (BIS), New Delhi, India.
- IS 4031 (Part 6) (1988), Determination of Compressive Strength of Hydraulic Cement Other than Masonary Cement, Bureau of Indian Standards (BIS), New Delhi, India.
- Kaluza, M. (2017), "Analysis of in-plane deformation of walls made using AAC blocks strengthened by GFRP mesh", Procedia Eng., 193, 393-400. https://doi.org/10.1016/j.proeng.2017.06.229.
- Lyngkhoi, R.B., Warjri, T. and Marthong, C. (2023), "Shear performance of AAC masonry triplets strengthened by reinforcing steel wire mesh in the bed and bed - head joint", Earthq. Struct., 25(3), 149-160. https://doi.org/10.12989/eas.2023.25.3.149.
- Michelini, E., Ferretti, D., Miccoli, L. and Parisi, F. (2023), "Autoclaved aerated concrete masonry for energy efficient buildings: State of the art and future developments", Constr. Build. Mater., 402, 132996. https://doi.org/10.1016/j.conbuildmat.2023.132996.
- Milani, A.S., Lubeck, A., Mohamad, G., Neto, A.B.D.S.S. and Budny, J. (2021), "Experimental investigation of small-scale clay blocks masonry walls with chases under compression", Constr. Build. Mater., 273, 121539. https://doi.org/10.1016/j.conbuildmat.2020.121539.
- Mojsilovic, N. (2011), "Masonry elements with chases: Behaviour under compression", Constr. Build. Mater., 25, 4415-4425. https://doi.org/10.1016/j.conbuildmat.2010.12.027.
- Narayanan, N. and Ramamurthy, K. (2000), "Structure and properties of aerated concrete: A review", Cement Concrete Compos., 22, 321-329. https://doi.org/10.1016/S0958-9465(00)00016-0.
- Raj, A., Borsaikia, A.C. and Dixit, U.S. (2020a), "Bond strength of Autoclaved Aerated Concrete (AAC) masonry using various joint materials", J. Build. Eng., 28, 101039. https://doi.org/10.1016/j.jobe.2019.101039.
- Raj, A., Borsaikia, A.C. and Dixit, U.S. (2020b), "Evaluation of mechanical properties of autoclaved aerated concrete (AAC) block and its masonry", J. Inst. Eng. Ser. A, 101(2), 315-325. https://doi.org/10.1007/s40030-020-00437-5.
- Sathiparan, N. and Rumeshkumar, U. (2018), "Effect of moisture condition on mechanical behavior of low strength brick masonry", J. Build. Eng., 17, 23-31. https://doi.org/10.1016/j.jobe.2018.01.015.
- Singh, S.B. and Munjal, P. (2017), "Bond strength and compressive stress-strain characteristics of brick masonry", J. Build. Eng., 9, 10-16. https://doi.org/10.1016/j.jobe.2016.11.006.
- Vicente, R., Varum, H., Figueiredo, A., Ferreira, T.M. and Mendes da Silva, J.A.R. (2014), "Hollowed clay brick masonry elements with chases: Behaviour under compression", 9th International Masonry Conference, Guimaraes, Portugal, July.