Acknowledgement
The authors gratefully acknowledge the support for this research from GEMA research group of the UTN FRCU, "Premoldeados Salamanca" enterprise and "Ferrocement" enterprise.
References
- ACI (2014a), 523.3R-14: Guide for Cellular Concretes above 50 lb/ft3 (800 kg/m3), American Concrete Institute, Farmington Hills, MI, USA.
- ACI (2014b), ACI 318-14: Building Code Requirements for Structural Concrete: Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14): An ACI Report, American Concrete Institute, Farmington Hills, MI, USA.
- Almasabha, G., Alshboul, O., Shehadeh, A. and Almuflih, A.S. (2022), "Machine learning algorithm for shear strength prediction of short links for steel buildings", Build., 12(6), 775. https://doi.org/10.3390/buildings12060775.
- Almusallam, T. and Alsayed, S. (1995), "Stress-strain relationship of normal, high-strength and lightweight concrete", Mag. Concrete Res., 47(170), 39-44. https://doi.org/10.1680/macr.1995.47.170.39.
- Alshboul, O., Almasabha, G., Shehadeh, A., Al Hattamleh, O. and Almuflih, A.S. (2022a), "Optimization of the structural performance of buried reinforced concrete pipelines in cohesionless soils", Mater., 15(12), 4051. https://doi.org/10.3390/ma15124051.
- Alshboul, O., Almasabha, G., Shehadeh, A., Mamlook, R.E.A., Almuflih, A.S. and Almakayeel, N.(2022b), "Machine learning-based model for predicting the shear strength of slender reinforced concrete beams without stirrups", Build., 12(8), 1166. https://doi.org/10.3390/buildings12081166.
- Amran, Y.M., Farzadnia, N. and Ali, A.A. (2015), "Properties and applications of foamed concrete; a review", Constr. Build. Mater., 101, 990-1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112.
- ASTM (2015), C128: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, USA.
- ASTM (2017), C188: Standard Test Method for Density of Hydraulic Cement, ASTM International, West Conshohocken, PA, USA.
- ASTM (2021), C39: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
- ASTM (2022a), C31: Practice for Making and Curing Concrete Test Specimens in the Field, ASTM International, West Conshohocken, PA, USA.
- ASTM (2022b), C469: Test Method for Static Modulus of Elasticity and Poissons Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA.
- Brady, K., Watts, G. and Jones, M. (2001), Application Guide AG39: Specification for Foamed Concrete, Highways Agency and Transport Research Laboratory, Wokingham, UK.
- Byun, K., Song, H., Park, S. and Song, Y. (1998), "Development of structural lightweight foamed concrete using polymer foam agent", ICPIC-98, Bologna, Italy, September.
- Carreira, D.J. and Chu, K.H. (1985), "Stress-strain relationship for plain concrete in compression", J. Proc., 82, 797-804.
- CEB-FIB (1993), Model Code 1990: Design Code, 213-214, International Federation for Structural Concrete, Lausanne, Switzerland.
- CEB-FIB (2010), Model Code for Concrete Structures 2010, International Federation for Structural Concrete, Lausanne, Switzerland.
- Chica, L. and Alzate, A. (2019), "Cellular concrete review: New trends for application in construction", Constr. Build. Mater., 200, 637-647. https://doi.org/10.1016/j.conbuildmat.2018.12.136.
- Cui, H., Lo, T.Y., Memon, S.A., Xing, F. and Shi, X. (2012), "Experimental investigation and development of analytical model for pre-peak stress-strain curve of structural lightweight aggregate concrete", Constr. Build. Mater., 36, 845-859. https://doi.org/10.1016/j.conbuildmat.2012.06.041.
- Hsu, L. and Hsu, C.T. (1994), "Complete stress-strain behaviour of high-strength concrete under compression", Mag. Concrete Res., 46(169), 301-312. https://doi.org/10.1680/macr.1994.46.169.301.
- Jones, M. and McCarthy, A. (2005), "Preliminary views on the potential of foamed concrete as a structural material", Mag. Concrete Res., 57(1), 21-31. https://doi.org/10.1680/macr.2005.57.1.21.
- Kamara, M.E., Novak, L.C. and Rabbat, B.G. (2008), Notes on ACI 318-08, Building Code Requirements for Structural Concrete: With Design Applications, Portland Cement Association, Washington, D.C., USA.
- Kozlowski, M. and Kadela, M. (2018), "Mechanical characterization of lightweight foamed concrete", Adv. Mater. Sci. Eng., 2018, 1-9. https://doi.org/10.1155/2018/6801258.
- Li, Y., Yin, S., Zhao, K., Li, S., Wang, W. and Sheng, J. (2024), "A new modified stress-strain model for concrete confined with textile reinforced concrete composites", J. Build. Eng., 86, 108858. https://doi.org/10.1016/j.jobe.2024.108858.
- Lim, J.C. and Ozbakkaloglu, T. (2014), "Stress-strain model for normal-and light-weight concretes under uniaxial and triaxial compression", Constr. Build. Mater., 71, 492-509. https://doi.org/10.1016/j.conbuildmat.2014.08.050.
- Liu, B., Zhang, B., Wang, Z.Z. and Bai, G.L. (2023), "Study on the stress-strain full curve of recycled coarse aggregate concrete under uniaxial compression", Constr. Build. Mater., 363, 129884. https://doi.org/10.1016/j.conbuildmat.2022.129884.
- Liu, X., Wu, T. and Liu, Y. (2019), "Stress-strain relationship for plain and fibre-reinforced lightweight aggregate concrete", Constr. Build. Mater., 225, 256-272. https://doi.org/10.1016/j.conbuildmat.2019.07.135.
- Lu, Z.H. and Zhao, Y.G. (2010), "Empirical stress-strain model for unconfined high-strength concrete under uniaxial compression", J. Mater. Civil Eng., 22(11), 1181-1186. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000095.
- McCormick, F.C. (1967), "Rational proportioning of preformed foam cellular concrete", J. Proc., 64, 104-110. https://doi.org/10.14359/7547.
- Narayanan, N. and Ramamurthy, K. (2000), "Structure and properties of aerated concrete: A review", Cement Concrete Compos., 22(5), 321-329. https://doi.org/10.1016/S0958-9465(00)00016-0.
- Nguyen, T.T., Bui, H.H., Ngo, T.D. and Nguyen, G.D. (2017), "Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete", Mater. Des., 130, 103-119. https://doi.org/10.1016/j.matdes.2017.05.054.
- Nguyen, T.T., Bui, H.H., Ngo, T.D., Nguyen, G.D., Kreher, M.U. and Darve, F. (2019), "Amicromechanical investigation for the effects of pore size and its distribution on geopolymer foam concrete under uniaxial compression", Eng. Fract. Mech., 209, 228-244. https://doi.org/10.1016/j.engfracmech.2019.01.033.
- Pimanmas, A. and Saleem, S. (2019), "Evaluation of existing stress-strain models and modeling of PET FRP-confined concrete", J. Mater. Civil Eng., 31(12), 04019303. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002941.
- Popovics, S. (1973), "A numerical approach to the complete stress-strain curve of concrete", Cement Concrete Res., 3(5), 583-599. https://doi.org/10.1016/0008-8846(73)90096-3.
- Retamal, F.A. and Rougier, V.C. (2021), "Experimental study and development of an analytical model of stress-strain curve for foamed cellular concrete in uniaxial compression", 26 Argentine Conference on Structural Engineering.
- Retamal, F.A. and Rougier, V.C. (2022), "Mechanical behaviour, properties and characteristics of foamed cellular concrete: A review", Adv. Mater. Res., 1170, 61-85. https://doi.org/10.4028/p-ds0fcq.
- Retamal, F.A. and Rougier, V.C. (2023), "Strength prediction model for foamed cellular concrete", J. Mech. Mater. Struct., 18(4), 427-443. https://doi.org/10.2140/jomms.2023.18.427.
- Retamal, F.A. and Rougier, V.C. (2024), "Mechanical behavior of reinforced concrete hybrid beams made with normal concrete, foamed cellular concrete and fiber reinforced foamed cellular concrete", Innov. Infrastr. Solut., 9(1), 11. https://doi.org/10.1007/s41062-023-01258-8.
- Richard, R.M. and Abbott, B.J. (1975), "Versatile elastic-plastic stress-strain formula", J. Eng. Mech. Div., 101(4), 511-515. https://doi.org/10.1061/JMCEA3.0002047.
- Rowe, R., Somerville, G. and Beeby, A. (1987), Handbook to British Standard BS8110: 1985: Structural Use of Concrete, Palladian, London, UK.
- Sargin, M., Ghosh, S.K. and Handa, V. (1971), "Effects of lateral reinforcement upon the strength and deformation properties of concrete", Mag. Concrete Res., 23(75-76), 99-110. https://doi.org/10.1680/macr.1971.23.76.99.
- Strukar, K., Kalman Sipos, T., Doksanovic, T. and Rodrigues, H. (2018), "Experimental study of rubberized concrete stress-strain behavior for improving constitutive models", Mater., 11(11), 2245. https://doi.org/10.3390/ma11112245.
- Sun, C., Zhu, Y., Guo, J., Zhang, Y. and Sun, G. (2018), "Effects of foaming agent type on the workability, drying shrinkage, frost resistance and pore distribution of foamed concrete", Constr. Build. Mater., 186, 833-839. https://doi.org/10.1016/j.conbuildmat.2018.08.019.
- Tada, S. (1986), "Material design of aerated concrete-An optimum performance design", Mater. Struct., 19(1), 21-26. https://doi.org/10.1007/BF02472306.
- Tarawneh, A., Almasabha, G., Alawadi, R. and Tarawneh, M. (2021), "Innovative and reliable model for shear strength of steel fibers reinforced concrete beams", Struct., 32, 1015-1025. https://doi.org/10.1016/j.istruc.2021.03.081.
- Tomaszewicz, A. (1984), "Betongens arbeidsdiagram", SINTEF Report STF A, 65, 84065.
- Van Gysel, A. and Taerwe, L. (1996), "Analytical formulation of the complete stress-strain curve for high strength concrete", Mater. Struct., 29(9), 529-533. https://doi.org/10.1007/BF02485952.
- Wang, P., Shah, S. and Naaman, A. (1978), "Stress-strain curves of normal and lightweight concrete in compression", J. Proc., 75, 603-611. https://doi.org/10.14359/10973.
- Wee, T., Chin, M. and Mansur, M. (1996), "Stress-strain relationship of high-strength concrete in compression", J. Mater. Civil Eng., 8(2), 70-76. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(70).
- Yang, H., Fang, J., Jiang, J., Li, M. and Mei, J. (2023), "Compressive stress-strain curve of recycled concrete under repeated loading", Constr. Build. Mater., 387, 131598. https://doi.org/10.1016/j.conbuildmat.2023.131598.
- Zeng, J.J., Ye, Y.Y., Gao, W.Y., Smith, S.T. and Guo, Y.C. (2020), "Stress-strain behavior of polyethylene terephthalate fiber-reinforced polymer-confined normal-, high-and ultra high-strength concrete", J. Build. Eng., 30, 101243. https://doi.org/10.1016/j.jobe.2020.101243.
- Zhao, H., Wang, Y. and Liu, F. (2017), "Stress-strain relationship of coarse RCA concrete exposed to elevated temperatures", Mag. Concrete Res., 69(13), 649-664. https://doi.org/10.1680/jmacr.16.00333.
- Zhu, P., Jia, Q., Li, Z., Wu, Y. and Ma, Z.J. (2024), "Theoretical model for the stress-strain curve of CNT-reinforced concrete under uniaxial compression", Build., 14(2), 418. https://doi.org/10.3390/buildings14020418.