DOI QR코드

DOI QR Code

Analytical model of stress-strain curve for foamed cellular concrete in compression

  • Facundo A. Retamal (Computational Mechanics and Structures Research Group (GIMCE), Civil Engineering Department, C. del Uruguay Regional Faculty (FRCU), National Technological University (UTN)) ;
  • Viviana C. Rougier (Computational Mechanics and Structures Research Group (GIMCE), Civil Engineering Department, C. del Uruguay Regional Faculty (FRCU), National Technological University (UTN))
  • Received : 2022.08.18
  • Accepted : 2022.04.18
  • Published : 2024.10.25

Abstract

Several mathematical models describe the compressive behaviour of different types of concretes, but no specific one for foamed cellular concrete (FCC) has been developed. In this work, simple compression tests on FCC specimens of different mixes were conducted to study this material's compression behaviour curve until failure. Using continuous load and displacement measurement equipment, it was possible to obtain stress-strain curves up to peak for FCC of different strengths (from 1.20 to 47.34 MPa). Elastic modulus, compressive strength and failure strain values were also determined. Through the analysis of the mentioned curves, a mathematical model of them was obtained, through which it is possible to describe the compression behaviour of FCC up to failure. The comparison between the predicted curve against experimental data shows the effectiveness of the proposed model.

Keywords

Acknowledgement

The authors gratefully acknowledge the support for this research from GEMA research group of the UTN FRCU, "Premoldeados Salamanca" enterprise and "Ferrocement" enterprise.

References

  1. ACI (2014a), 523.3R-14: Guide for Cellular Concretes above 50 lb/ft3 (800 kg/m3), American Concrete Institute, Farmington Hills, MI, USA.
  2. ACI (2014b), ACI 318-14: Building Code Requirements for Structural Concrete: Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14): An ACI Report, American Concrete Institute, Farmington Hills, MI, USA.
  3. Almasabha, G., Alshboul, O., Shehadeh, A. and Almuflih, A.S. (2022), "Machine learning algorithm for shear strength prediction of short links for steel buildings", Build., 12(6), 775. https://doi.org/10.3390/buildings12060775.
  4. Almusallam, T. and Alsayed, S. (1995), "Stress-strain relationship of normal, high-strength and lightweight concrete", Mag. Concrete Res., 47(170), 39-44. https://doi.org/10.1680/macr.1995.47.170.39.
  5. Alshboul, O., Almasabha, G., Shehadeh, A., Al Hattamleh, O. and Almuflih, A.S. (2022a), "Optimization of the structural performance of buried reinforced concrete pipelines in cohesionless soils", Mater., 15(12), 4051. https://doi.org/10.3390/ma15124051.
  6. Alshboul, O., Almasabha, G., Shehadeh, A., Mamlook, R.E.A., Almuflih, A.S. and Almakayeel, N.(2022b), "Machine learning-based model for predicting the shear strength of slender reinforced concrete beams without stirrups", Build., 12(8), 1166. https://doi.org/10.3390/buildings12081166.
  7. Amran, Y.M., Farzadnia, N. and Ali, A.A. (2015), "Properties and applications of foamed concrete; a review", Constr. Build. Mater., 101, 990-1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112.
  8. ASTM (2015), C128: Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, USA.
  9. ASTM (2017), C188: Standard Test Method for Density of Hydraulic Cement, ASTM International, West Conshohocken, PA, USA.
  10. ASTM (2021), C39: Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA.
  11. ASTM (2022a), C31: Practice for Making and Curing Concrete Test Specimens in the Field, ASTM International, West Conshohocken, PA, USA.
  12. ASTM (2022b), C469: Test Method for Static Modulus of Elasticity and Poissons Ratio of Concrete in Compression, ASTM International, West Conshohocken, PA, USA.
  13. Brady, K., Watts, G. and Jones, M. (2001), Application Guide AG39: Specification for Foamed Concrete, Highways Agency and Transport Research Laboratory, Wokingham, UK.
  14. Byun, K., Song, H., Park, S. and Song, Y. (1998), "Development of structural lightweight foamed concrete using polymer foam agent", ICPIC-98, Bologna, Italy, September.
  15. Carreira, D.J. and Chu, K.H. (1985), "Stress-strain relationship for plain concrete in compression", J. Proc., 82, 797-804.
  16. CEB-FIB (1993), Model Code 1990: Design Code, 213-214, International Federation for Structural Concrete, Lausanne, Switzerland.
  17. CEB-FIB (2010), Model Code for Concrete Structures 2010, International Federation for Structural Concrete, Lausanne, Switzerland.
  18. Chica, L. and Alzate, A. (2019), "Cellular concrete review: New trends for application in construction", Constr. Build. Mater., 200, 637-647. https://doi.org/10.1016/j.conbuildmat.2018.12.136.
  19. Cui, H., Lo, T.Y., Memon, S.A., Xing, F. and Shi, X. (2012), "Experimental investigation and development of analytical model for pre-peak stress-strain curve of structural lightweight aggregate concrete", Constr. Build. Mater., 36, 845-859. https://doi.org/10.1016/j.conbuildmat.2012.06.041.
  20. Hsu, L. and Hsu, C.T. (1994), "Complete stress-strain behaviour of high-strength concrete under compression", Mag. Concrete Res., 46(169), 301-312. https://doi.org/10.1680/macr.1994.46.169.301.
  21. Jones, M. and McCarthy, A. (2005), "Preliminary views on the potential of foamed concrete as a structural material", Mag. Concrete Res., 57(1), 21-31. https://doi.org/10.1680/macr.2005.57.1.21.
  22. Kamara, M.E., Novak, L.C. and Rabbat, B.G. (2008), Notes on ACI 318-08, Building Code Requirements for Structural Concrete: With Design Applications, Portland Cement Association, Washington, D.C., USA.
  23. Kozlowski, M. and Kadela, M. (2018), "Mechanical characterization of lightweight foamed concrete", Adv. Mater. Sci. Eng., 2018, 1-9. https://doi.org/10.1155/2018/6801258.
  24. Li, Y., Yin, S., Zhao, K., Li, S., Wang, W. and Sheng, J. (2024), "A new modified stress-strain model for concrete confined with textile reinforced concrete composites", J. Build. Eng., 86, 108858. https://doi.org/10.1016/j.jobe.2024.108858.
  25. Lim, J.C. and Ozbakkaloglu, T. (2014), "Stress-strain model for normal-and light-weight concretes under uniaxial and triaxial compression", Constr. Build. Mater., 71, 492-509. https://doi.org/10.1016/j.conbuildmat.2014.08.050.
  26. Liu, B., Zhang, B., Wang, Z.Z. and Bai, G.L. (2023), "Study on the stress-strain full curve of recycled coarse aggregate concrete under uniaxial compression", Constr. Build. Mater., 363, 129884. https://doi.org/10.1016/j.conbuildmat.2022.129884.
  27. Liu, X., Wu, T. and Liu, Y. (2019), "Stress-strain relationship for plain and fibre-reinforced lightweight aggregate concrete", Constr. Build. Mater., 225, 256-272. https://doi.org/10.1016/j.conbuildmat.2019.07.135.
  28. Lu, Z.H. and Zhao, Y.G. (2010), "Empirical stress-strain model for unconfined high-strength concrete under uniaxial compression", J. Mater. Civil Eng., 22(11), 1181-1186. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000095.
  29. McCormick, F.C. (1967), "Rational proportioning of preformed foam cellular concrete", J. Proc., 64, 104-110. https://doi.org/10.14359/7547.
  30. Narayanan, N. and Ramamurthy, K. (2000), "Structure and properties of aerated concrete: A review", Cement Concrete Compos., 22(5), 321-329. https://doi.org/10.1016/S0958-9465(00)00016-0.
  31. Nguyen, T.T., Bui, H.H., Ngo, T.D. and Nguyen, G.D. (2017), "Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete", Mater. Des., 130, 103-119. https://doi.org/10.1016/j.matdes.2017.05.054.
  32. Nguyen, T.T., Bui, H.H., Ngo, T.D., Nguyen, G.D., Kreher, M.U. and Darve, F. (2019), "Amicromechanical investigation for the effects of pore size and its distribution on geopolymer foam concrete under uniaxial compression", Eng. Fract. Mech., 209, 228-244. https://doi.org/10.1016/j.engfracmech.2019.01.033.
  33. Pimanmas, A. and Saleem, S. (2019), "Evaluation of existing stress-strain models and modeling of PET FRP-confined concrete", J. Mater. Civil Eng., 31(12), 04019303. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002941.
  34. Popovics, S. (1973), "A numerical approach to the complete stress-strain curve of concrete", Cement Concrete Res., 3(5), 583-599. https://doi.org/10.1016/0008-8846(73)90096-3.
  35. Retamal, F.A. and Rougier, V.C. (2021), "Experimental study and development of an analytical model of stress-strain curve for foamed cellular concrete in uniaxial compression", 26 Argentine Conference on Structural Engineering.
  36. Retamal, F.A. and Rougier, V.C. (2022), "Mechanical behaviour, properties and characteristics of foamed cellular concrete: A review", Adv. Mater. Res., 1170, 61-85. https://doi.org/10.4028/p-ds0fcq.
  37. Retamal, F.A. and Rougier, V.C. (2023), "Strength prediction model for foamed cellular concrete", J. Mech. Mater. Struct., 18(4), 427-443. https://doi.org/10.2140/jomms.2023.18.427.
  38. Retamal, F.A. and Rougier, V.C. (2024), "Mechanical behavior of reinforced concrete hybrid beams made with normal concrete, foamed cellular concrete and fiber reinforced foamed cellular concrete", Innov. Infrastr. Solut., 9(1), 11. https://doi.org/10.1007/s41062-023-01258-8.
  39. Richard, R.M. and Abbott, B.J. (1975), "Versatile elastic-plastic stress-strain formula", J. Eng. Mech. Div., 101(4), 511-515. https://doi.org/10.1061/JMCEA3.0002047.
  40. Rowe, R., Somerville, G. and Beeby, A. (1987), Handbook to British Standard BS8110: 1985: Structural Use of Concrete, Palladian, London, UK.
  41. Sargin, M., Ghosh, S.K. and Handa, V. (1971), "Effects of lateral reinforcement upon the strength and deformation properties of concrete", Mag. Concrete Res., 23(75-76), 99-110. https://doi.org/10.1680/macr.1971.23.76.99.
  42. Strukar, K., Kalman Sipos, T., Doksanovic, T. and Rodrigues, H. (2018), "Experimental study of rubberized concrete stress-strain behavior for improving constitutive models", Mater., 11(11), 2245. https://doi.org/10.3390/ma11112245.
  43. Sun, C., Zhu, Y., Guo, J., Zhang, Y. and Sun, G. (2018), "Effects of foaming agent type on the workability, drying shrinkage, frost resistance and pore distribution of foamed concrete", Constr. Build. Mater., 186, 833-839. https://doi.org/10.1016/j.conbuildmat.2018.08.019.
  44. Tada, S. (1986), "Material design of aerated concrete-An optimum performance design", Mater. Struct., 19(1), 21-26. https://doi.org/10.1007/BF02472306.
  45. Tarawneh, A., Almasabha, G., Alawadi, R. and Tarawneh, M. (2021), "Innovative and reliable model for shear strength of steel fibers reinforced concrete beams", Struct., 32, 1015-1025. https://doi.org/10.1016/j.istruc.2021.03.081.
  46. Tomaszewicz, A. (1984), "Betongens arbeidsdiagram", SINTEF Report STF A, 65, 84065.
  47. Van Gysel, A. and Taerwe, L. (1996), "Analytical formulation of the complete stress-strain curve for high strength concrete", Mater. Struct., 29(9), 529-533. https://doi.org/10.1007/BF02485952.
  48. Wang, P., Shah, S. and Naaman, A. (1978), "Stress-strain curves of normal and lightweight concrete in compression", J. Proc., 75, 603-611. https://doi.org/10.14359/10973.
  49. Wee, T., Chin, M. and Mansur, M. (1996), "Stress-strain relationship of high-strength concrete in compression", J. Mater. Civil Eng., 8(2), 70-76. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:2(70).
  50. Yang, H., Fang, J., Jiang, J., Li, M. and Mei, J. (2023), "Compressive stress-strain curve of recycled concrete under repeated loading", Constr. Build. Mater., 387, 131598. https://doi.org/10.1016/j.conbuildmat.2023.131598.
  51. Zeng, J.J., Ye, Y.Y., Gao, W.Y., Smith, S.T. and Guo, Y.C. (2020), "Stress-strain behavior of polyethylene terephthalate fiber-reinforced polymer-confined normal-, high-and ultra high-strength concrete", J. Build. Eng., 30, 101243. https://doi.org/10.1016/j.jobe.2020.101243.
  52. Zhao, H., Wang, Y. and Liu, F. (2017), "Stress-strain relationship of coarse RCA concrete exposed to elevated temperatures", Mag. Concrete Res., 69(13), 649-664. https://doi.org/10.1680/jmacr.16.00333.
  53. Zhu, P., Jia, Q., Li, Z., Wu, Y. and Ma, Z.J. (2024), "Theoretical model for the stress-strain curve of CNT-reinforced concrete under uniaxial compression", Build., 14(2), 418. https://doi.org/10.3390/buildings14020418.