DOI QR코드

DOI QR Code

Distribution and Vegetation Characteristics of Semi-mangrove Hibisus hamabo in Korea

한국에 자생하는 준맹그로브 황근의 분포와 식생 특성

  • Eun-Ha Park (Warm-Temperate and Subtropical Forest Research Center, National Institute of Forest science) ;
  • Bo-Ra Lee (Warm-Temperate and Subtropical Forest Research Center, National Institute of Forest science) ;
  • Ju-Eun Yang (Warm-Temperate and Subtropical Forest Research Center, National Institute of Forest science) ;
  • Min-Ji Park (Warm-Temperate and Subtropical Forest Research Center, National Institute of Forest science) ;
  • Byoung-Ki Choi (National Institute of Forest science)
  • 박은하 (국립산림과학원 난대아열대산림연구소) ;
  • 이보라 (국립산림과학원 난대아열대산림연구소) ;
  • 양주은 (국립산림과학원 난대아열대산림연구소) ;
  • 박민지 (국립산림과학원 난대아열대산림연구소) ;
  • 최병기 (국립산림과학원 산림환경보전연구부)
  • Received : 2024.02.07
  • Accepted : 2024.07.15
  • Published : 2024.08.31

Abstract

Hibiscus hamabo, the northernmost semi-mangrove species in East Asia, presents an important case study for examining climate change's impact on temperate ecosystems and shifts in Korea's subtropical vegetation. This study investigates vegetation characteristics of H. hamabo and evaluates environmental factors influencing their distribution. H. hamabo communities are classified by regional and coastal types. Group I is found in depressed areas within deep bays, cohabiting with herbaceous halophytes. Group II develops along coasts with exposed bedrock or on gravelly coasts, cohabiting with tide tolerance vine shrubs. Group III in Japan encompasses a broader range of coastal environments compared to Korea. A monospecific population with over 100 individuals appeared in this group. this study reveals that precipitation of warmest quarter is the most important environmental factor affecting the distribution of H. hamabo communities. This research analyzes the influence of climatic variables in the distribution of semi-mangrove species, contributing to our understanding of ecological responses to climate change.

황근은 동아시아에서 가장 북쪽에 분포하는 준맹그로브에 속한다. 황근의 식생 분포 변화를 살펴보는 것은 기후변화로 인한 우리나라의 난대 식생대 변화를 관찰하는데 유용할 것으로 판단된다. 본 연구는 Hibiscus속 준맹그로브와 황근의 지리적 분포 관계를 살펴보고 황근 군락 분포에 영향을 미치는 환경요인을 분석하였다. 황근 군락은 지역과 해안 유형에 의해 구분할 수 있었는데, 그룹 I의 경우 깊은 만 안쪽으로 함몰된 지형에 발달한 토양을 기반으로 군락이 형성되어 있으며 초본 염생식물과 함께 출현하였다. 그룹 II는 기반암이 많이 노출된 해안 혹은 자갈 해안에서 강한 파도의 영향을 견딜 수 있는 덩굴성 해안 관목과 함께 발달하였다. 그룹 III은 일본에 위치한 군락으로 우리나라보다 다양한 해안 유형에서 나타나며, 100개체 이상 큰 규모의 순군락이 출현하였다. 황근 군락 분포에 영향을 주는 환경요인을 분석한 결과 가장 따뜻한 분기의 강수량이 가장 중요한 요인으로 분석되었다. 본 연구에서는 기후 인자들과 준맹그로브 분포의 관계를 분석하고 기후변화 영향에 대한 황근의 생태적인 반응을 이해하는 기반을 마련하고자 한다.

Keywords

Acknowledgement

이 논문은 국립산림과학원 난대아열대산림연구소에서 지원하는 연구비(또는 과제번호 FE0100-2022-04-2024)에 의하여 연구되었음.

References

  1. Ahn, Y.H.(2003) Distribution of native Hibiscus hamabo and ecological characteristics of naturally inhabited areas in Jeju Island. Horticultural Science & Technology 21(4): 440-446. (in Korean with English abstract) 
  2. Ahn, Y.H., K.H. Chung and H.S. Park(2003) Vegetation and flora of Hibiscus hamabo inhabited naturally in Soan Island. Journal of Environmental Science International 12(11): 1181-1187. 
  3. Alongi, D.M.(2008) Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science 76(1): 1-13. 
  4. Angert, A.L., L.G. Crozier, L.J. Rissler, S.E. Gilman, J.J. Tewksbury and A.J. Chunco(2011) Do species' traits predict recent shifts at expanding range edges? Ecology Letters 14(7): 677-689. 
  5. Braun-Blanquet, J.(1965) Plant Sociology. The Study of Plant Communities (Transl. by G.D. Fuller and H.S. Conard). New York, 439pp. 
  6. Bray, J.R. and J.T. Curtis(1957) An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27(4): 326-349. 
  7. Breiman, L.(2001) Random forests. Machine Learning 45: 5-32.
  8. Chapman, V.J.(1976) Mangrove Vegetation. J. Cramer, Lehre., 447pp. 
  9. Chen, C., B. He, L. Guo, Y. Zhang, X. Xie and Z. Chen(2018) Identifying critical climate periods for vegetation growth in the Northern Hemisphere. Journal of Geophysical Research: Biogeosciences 123: 2541-2552. 
  10. Clark, J. S.(1998) Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. The American Naturalist 152(2): 204-224. 
  11. Davis, J.H.(1940) The ecology and geologic role of mangroves in Florida. Carnegie Institute of Washington Publications. Papers from Tortugas Laboratory 32: 303-412. 
  12. Dufrene, M. and P. Legendre(1997) Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs 67(3): 345-366. 
  13. Elevitch, C.R. and L.A. Thomson(2006) Hibiscus Tiliaceus (beach hibiscus). Species Profiles for Pacific Island Agroforestry, 14pp. 
  14. Emanuel, W.R., H.H. Shugart and M.P. Stevenson(1985). Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change, 7(1): 29-43. 
  15. Foden, W., G.M. Mace, J.C. Vie, A. Angulo, S.H. Butchart, L. DeVantier, H. Dublin, A. Gutsche, S. Stuart and E. Turak(2009) Species Susceptibility to Climate Change Impacts. Wildlife in a Changing World-an Analysis of the 2008 IUCN Red List of Threatened Species, 77pp. 
  16. Fryxell, P.A.(2001) Talipariti (Malvaceae), a segregate from Hibiscus. Contribution from the University of the Michigan Herbarium 23: 225-270. 
  17. GBIF(2024) Free and Open Access to Biodiversity Data. Global Biodiversity Information Facility Secretariat. https://www.gbif.org. 
  18. Ghayoumi, R., E. Ebrahimi, T.F. Hosseini and M. Keshtkar(2019) Predicting the effects of climate change on the distribution of mangrove forests in Iran using the maximum entropy model. Journal of Applied RS and GIS Techniques in Natural Resource Science 10(2): 34-47. 
  19. Grace, J., F. Berninger and L. Nagy(2002) Impacts of climate change on the tree line. Annals of Botany 90(4): 537-544. 
  20. Habary, A., J.L. Johansen, T.J. Nay, J.F. Steffensen and J.L. Rummer(2017) Adapt, move or die-how will tropical coral reef fishes cope with ocean warming? Global Change Biology 23(2): 566-577. 
  21. Hegland, S.J., A. Nielsen, A. Lazaro, A.L. Bjerknes and O. Totland (2009) How does climate warming affect plant-pollinator interactions? Ecology Letters 12(2): 184-195. 
  22. Hotta, M.(1989) Useful Plants of the World. Heibonsha Ltd., Tokyo, pp. 525-527. 
  23. Hu, W., Y. Wang, D. Zhang, W. Yu, G. Chen, T. Xie, Z. Liu, Z. Ma, J. Du, B. Chao, G. Lei and B. Chen(2020) Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Science of The Total Environment 748: 142321. 
  24. IPCC(2021) Climate Change 2021: The Physical Science Basis. Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2391pp. 
  25. Iverson, L.R. and A.M. Prasad(1998) Predicting abundance of 80 tree species following climate change in the eastern United States. Ecological Monographs 68(4): 465-485. 
  26. Kathiresan, K. and B.L. Bingham(2001) Biology of mangroves and mangrove ecosystems. Advances in Marine Biology. 40: 81-251. 
  27. KBD(2024) Kew Backbone Distributions. http://www.ipni.org and https://powo.science.kew.org/ 
  28. KNA(2016) Distribution Maps of Vascular Plants in Korea. Korea National Arboretum, South Korea, 809pp. (in Korean) 
  29. Kruskal, J.B.(1964) Non-metric multidimensional scaling: A numerical method. Psychometria 29: 115-129. 
  30. Lariviere, B. and D. Van den Poel(2005) Predicting customer retention and profitability by using random forests and regression forests techniques. Expert Systems with Applications 29(2): 472-484. 
  31. Lee, C., H. Kim, K. Cho, H. Choi and B. Lee(2022) Assessment of potential distribution possibility of the warm-temperate woody plants of East Asia in Korea. Ecology and Resilient Infrastructure 9(4): 269-281. (in Korean with English abstract) 
  32. Lee, C., J.S. Lee, C. Kim, Y. Chu and B. Lee(2023) Prediction of carbon accumulation within semi-mangrove ecosystems using remote sensing and artificial intelligence modling in Jeju Island, South Korea. Ecology and Resilient Infrastructure 10(4): 161-170. (in Korean with English abstract) 
  33. Li, J., J. Liao and M. Guan(2012) Salt tolerance of hibiscus hamabo seedlings: A candidate halophyte for reclamation areas. Acta Physiol Plant. 34: 1747-1755. 
  34. Lugo, A.E. and S.C. Snedaker(1974) The ecology of mangroves. Annual Review of Ecology and Systematics 5(1): 39-64. 
  35. McKee, K.L. and J.E. Rooth(2008) Where temperate meets tropical: Multi-factorial effects of elevated CO2, nitrogen enrichment, and competition on a mangrove-salt marsh community. Global Change Biology 14(5): 971-984. 
  36. McKee, K.L., D.R. Cahoon and I.C. Feller(2007) Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16(5): 545-556. 
  37. Naidoo, G., A.V. Tuffers and D.J. Willert(2002) Changes in gas exchange and chlorophyll fluorescence characteristics of two mangroves and a mangrove associate in response to salinity in the natural environment. Trees 16: 140-146. 
  38. Nakanishi, H.(1985) Geobotanical and ecological studies on three semi-mangrove plants in Japan. Japanese Journal of Ecology 35(1): 85-92. 
  39. Nakanishi, H.(2000) Distribution and ecology of the semi-mangrove, Hibiscus hamabo community in western Kyushu, Japan. Vegetation Science 17(2): 81-88. 
  40. Nakanishi, H., K. Nakanishi and A. Takaki(2007) Local variation and population diversity of Hibiscus hamabo (Malvaceae). Vegetation Science 24(1): 19-28. 
  41. Nakanishi, H., M.H. Kim and C.S. Kim(2004) Distribution and Ecology of Hibiscus Hamabo and Paliurus Ramosissimus in Jeju Island, Korea. Bulletin-faculty of Education Nagasaki University Natural Science, pp. 1-10. 
  42. Nathan, R., N. Horvitz, Y. He, A. Kuparinen, F.M. Schurr and G.G. Katul(2011) Spread of North American wind-dispersed trees in future environments. Ecology Letters 14(3): 211-219. 
  43. Ni, L., Z. Wang, Z. Fu, D. Liu, Y. Yin, H. Li and C. Gu(2021) Genome-wide analysis of basic helix-loop-helix family genes and expression analysis in response to drought and salt stresses in Hibiscus hamabo Sieb. et Zucc. International Journal of Molecular Sciences 22(16): 8748. 
  44. Ohwi, J.(1965) Flora of Japan. (in English; ed F.G. Meyer and E. H. Walker). Washington DC, 1067pp. 
  45. Oliveira, S., F. Oehler, J. San-Miguel-Ayanz, A. Camia and J.M. Pereira (2012) Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. Forest Ecology and Management 275: 117-129. 
  46. Parida, A.K. and A.B. Das(2005) Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety 60(3): 324-349. 
  47. Piou, C., I.C. Feller, U. Berger and F. Chi(2006) Zonation patterns of Belizean offshore mangrove forests 41 years after a catastrophic hurricane. Biotropica 38: 365-374. 
  48. Rao, C. R.(1964) The use and interpretation of principal component analysis in applied research. Sankhya: The Indian Journal of Statistics, Series A (1961-2002) 26(4): 329-358. 
  49. Saenger, P.(2002) Mangrove Ecology, Silviculture and Conservation. Kluwer Academic Publishers, Dordrecht, The Netherlands, 360pp. 
  50. Sakhanokho, H.F., N. Islam-Faridi, E.M. Babiker, C.D. Nelson, S.J. Stringer and J.J. Adamczyk Jr(2020) Determination of nuclear DNA content, ploidy, and FISH location of ribosomal DNA in Hibiscus hamabo. Scientia Horticulturae 264: 109167. 
  51. Sakio, H. and T. Masuzawa(2020) Advancing timberline on Mt. Fuji between 1978 and 2018. Plants 9(11): 1537. 
  52. Semeniuk, V.(2013) Predicted response of coastal wetlands to climate changes: A Western Australian model. Hydrobiologia, 708(1): 23-43. 
  53. Shimizu, Y.(1984) Comparison of the woody species between in the Bonin (oceanic) and Ryukyu (continental) island concerning the ecological release of plants in islands. Ogasawara Res. 10: 25-49. 
  54. Sittaro, F., A. Paquette, C. Messier and C. A. Nock(2017) Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Global Change Biology 23(8): 3292-3301. 
  55. Smith, T. J. and N. C. Duke(1987) Physical determinants of inter-estuary variation in mangrove species richness around the tropical coastline of Australia. Journal of Biogeography 14: 9-19. 
  56. Sugiura, S., T. Abe, and S. Makino(2006) Loss of extrafloral nectary on an oceanic island plant and its consequences for herbivory. American Journal of Botany 93(3): 491-495. 
  57. Takayama, K., T. Kajita, J.I.N. Murata and Y. Tateishi(2006) Phylogeography and genetic structure of Hibiscus tiliaceus-speciation of a pantropical plant with sea-drifted seeds. Molecular Ecology 15(10): 2871-2881. 
  58. Takayama, K., T. Ohi-Toma, H. Kudoh and H. Kato(2005) Origin and diversification of Hibiscus glaber, species endemic to the oceanic Bonin Islands, revealed by chloroplast DNA polymorphism. Molecular Ecology 14(4): 1059-1071. 
  59. Takayama, K., Y. Tateishi, J.I.N. Murata and T. Kajita(2008) Gene flow and population subdivision in a pantropical plant with sea- drifted seeds Hibiscus tiliaceus and its allied species: Evidence from microsatellite analyses. Molecular Ecology 17(11): 2730-2742. 
  60. Tomlinson, P.B.(1986) The Botany of Mangroves. Cambridge University Press, 419pp. 
  61. Ureego, L.E., J. Polania, M.F. Buitrago, L.F. Cuartas and A. Lema(2009) Distribution of mangroves along environmental gradients on San Andres Island (Colobian Caribbean). Bull Mar. Sci. 85: 27-43 
  62. Uyeki, H.(1941) Northern distribution limit of Korean evergreen broadleaved tree. Acta Phytotax. Geobot 10: 89-93. 
  63. Veldkornet, D.A. and A. Rajkaran(2019) Predicting shifts in the geographical distribution of two estuarine plant species from the subtropical and temperate regions of South Africa. Wetlands 39: 1179-1188. 
  64. Vozzo, J.A.(2002) Tropical Tree Seed Manual. US Department of Agriculture, Forest Service, pp. 508-510. 
  65. Walther, G.R., E. Post, P. Convey, A. Menzel, C. Parmesan, T.J. Beebee, J.M. Fromentin, O. Hoegh-Guldberg and F. Bairlein (2002) Ecological responses to recent climate change. Nature 416(6879): 389-395. 
  66. Wang, L., M. Mu, X. Li, P. Lin and W. Wang(2011) Differentiation between true mangroves and mangrove associates based on leaf traits and salt contents. Journal of Plant Ecology 4(4): 292-301. 
  67. Wang, Z., J.Y. Xue, S.Y. Hu, F. Zhang, R. Yu, D. Chen, Y. Van de Peer, J. Jiang, A. Song, L. Ni, J. Hua, Z. Lu, C. Yu, Y. Yin and C. Gu(2022) The genome of Hibiscus hamabo reveals its adaptation to saline and waterlogged habitat. Horticulture Research 9: uhac067. 
  68. Wang, Z., X. Xu and L. Ni(2019) Efficient virus-induced gene silencing in hibiscus hamabo Sieb. et Zucc. using tobacco rattle virus. PeerJ 7: e7505. 
  69. West, R.C.(1977) Tidal Salt-marsh and Mangal Formations of Middle and South America. Ecosystems of the World 1: Wet Coastal Ecosystems, Elsevier Scientific Publishing Co., New York, pp. 193-213. 
  70. Westhoff, V. and E. van der Maarel(1978) The Braun-Blanquet Approach. In: Ordination and Classification of Communities. pp. 287-399. (R.H. Whittacker, ed.), Dr. W Junk by Publisher. Hague, Boston, London. 
  71. Woodroffe, C.D. and J. Grindrod(1991) Mangrove biogeography: The role of quaternary environmental and sea-level change. Journal of Biogeography 18: 479-492. 
  72. Woodroffe, C.D.(1990) The impact of sea-level rise on mangrove shorelines. Progress in Physical Geography 14(4): 483-520. 
  73. Worldclim(2017) Global Climate and Weather Data. https://www.worldclim.org/ 
  74. Wu, T., S. Gu and H. Zhou(2013) Photosynthetic and physiological responses of native and exotic tidal woody seedlings to simulated tidal immersion. Estuar Coast Shelf Sci. 135: 280-284. 
  75. Yamazaki, Y., T. Kajita and K. Takayama(2023) Spatiotemporal process of long-distance seed dispersal in a pantropically distributed sea hibiscus group. Molecular Ecology 32(7): 1726-1738. 
  76. Youssef, T.(2007) Stomatal, biochemical and morphological factors limiting photosynthetic gas exchange in the mangrove associate Hibiscus tiliaceus under saline and arid environment. Aquatic Botany 87(4): 292-298. 
  77. Zhu, K., C.W. Woodall and J.S. Clark(2012) Failure to migrate: Lack of tree range expansion in response to climate change. Global Change Biology 18(3): 1042-1052.