DOI QR코드

DOI QR Code

Comparative study on the bioavailability of peptide extracts from Jeju black pigs and three-way crossbred pigs

  • Jae Won Jeong (Department of Animal Science and Technology, Chung-Ang University) ;
  • Ermie Mariano Jr (Department of Animal Science and Technology, Chung-Ang University) ;
  • Da Young Lee (Department of Animal Science and Technology, Chung-Ang University) ;
  • Seung Yun Lee (Division of Animal Science, Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Jae Hyeon Kim (Department of Animal Science and Technology, Chung-Ang University) ;
  • Seung Hyeon Yun (Department of Animal Science and Technology, Chung-Ang University) ;
  • Juhyun Lee (Department of Animal Science and Technology, Chung-Ang University) ;
  • Jinmo Park (Department of Animal Science and Technology, Chung-Ang University) ;
  • Yeongwoo Choi (Department of Animal Science and Technology, Chung-Ang University) ;
  • Dahee Han (Department of Animal Science and Technology, Chung-Ang University) ;
  • Jin Soo Kim (Department of Animal Science and Technology, Chung-Ang University) ;
  • Sun Jin Hur (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2023.05.26
  • Accepted : 2023.08.10
  • Published : 2024.09.30

Abstract

This study aimed to compare the changes in the bioactivities of peptide extracts (< 10 kDa) obtained from Jeju black pigs (JBP) and three-way crossbred pigs (Landrace × Yorkshire × Duroc, LYD) before and after digestion. The results showed that the loin peptide extracts of JBP maintained high 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity after in vitro digestion. However, the iron chelating activity and antihypertensive activity of all peptide extracts were decreased. This study suggested that the peptide extracts produced through alkaline-AK digestion have sufficiently high antioxidant and antihypertensive activities; however, these activities were reduced after in vitro digestion. Meanwhile, the JBP loin and ham peptide extracts promoted high superoxide dismutase (SOD) activity than that of LYD when administered to mice. Furthermore, the ham peptide extracts of JBP showed a relatively high antihypertensive activity in mice. Therefore, it is deemed that these peptide extracts from JBP are more bioactive than that of LYD, and can be used as bioactive materials.

Keywords

Acknowledgement

This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry(IPET) through High Value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs(MAFRA) (322008-5). This research was supported by the Chung-Ang University Graduated Research Scholarship in 2023.

References

  1. Jin SK, Kim CW, Song YM, Jang WH, Kim YB, Yeo JS, et al. Physicochemical characteristics of longissimus muscle between the Korean native pig and Landrace. Korean J Food Sci Anim Resour. 2001;21:142-8.
  2. Kim GW, Kim HY, Chun JY. Different characteristics between improved breeds and Jeju black pigs. In: 2016 KFN International Symposium and Annual Meeting; 2016; Jeju, Korea. p. 320-1.
  3. Arihara K. Functional properties of bioactive peptides derived from meat proteins. In: Nollet LML, Toldra F, editors. Advanced technologies for meat processing. Boca Raton, FL: CRC Press; 2006. p. 245-74.
  4. Sanchez A, Vazquez A. Bioactive peptides: a review. Food Qual Saf. 2017;1:29-46. https://doi.org/10.1093/fqsafe/fyx006
  5. Katayama K, Mori T, Kawahara S, Miake K, Kodama Y, Sugiyama M,et al. Angiotensin-I converting enzyme inhibitory peptide derived from porcine skeletal muscle myosin and its antihypertensive activity in spontaneously hypertensive rats. J Food Sci. 2007;72:S702-6. https://doi.org/10.1111/j.1750-3841.2007.00571.x
  6. Keska P, Stadnik J. Antimicrobial peptides of meat origin - an in silico and in vitro analysis. Protein Pept Lett. 2017;24:165-73. https://doi.org/10.2174/0929866523666161220113230
  7. Keska P, Rohn S, Halagarda M, Wojciak KM. Peptides from different carcass elements of organic and conventional pork-potential source of antioxidant activity. Antioxidants. 2020;9:835. https://doi.org/10.3390/antiox9090835
  8. Saiga A, Tanabe S, Nishimura T. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. J Agric Food Chem. 2003;51:3661-7. https://doi.org/10.1021/jf021156g
  9. Ryan JT, Ross RP, Bolton D, Fitzgerald GF, Stanton C. Bioactive peptides from muscle sources: meat and fish. Nutrients. 2011;3:765-91. https://doi.org/10.3390/nu3090765
  10. Sharma M, Gat Y, Arya S, Kumar V, Panghal A, Kumar A. A review on microbial alkaline protease: an essential tool for various industrial approaches. Ind Biotechnol. 2019;15:69-78. https://doi.org/10.1089/ind.2018.0032
  11. Singh PK, Shrivastava N, Ojha BK. Enzymes in the meat industry. In: Kuddus M, editor. Enzymes in food biotechnology: production, applications, and future prospects. London: Academic Press; 2019. p. 111-28.
  12. Ajibola CF, Fashakin JB, Fagbemi TN, Aluko RE. Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int J Mol Sci. 2011;12:6685-702. https://doi.org/10.3390/ijms12106685
  13. Ruiz-Ruiz J, Davila-Ortiz G, Chel-Guerrero L, Betancur-Ancona D. Angiotensin I-converting enzyme inhibitory activity in peptide fractions from hard-to-cook bean hydrolysates. J Biotechnol. 2010;150:309-10. https://doi.org/10.1016/j.jbiotec.2010.09.283
  14. Lee SJ, Lee SY, Chung MS, Hur SJ. Development of novel in vitro human digestion systems for screening the bioavailability and digestibility of foods. J Funct Foods. 2016;22:113-21. https://doi.org/10.1016/j.jff.2016.01.005
  15. Hur SJ, Lim BO, Decker EA, McClements DJ. In vitro human digestion models for food applications. Food Chem. 2011;125:1-12. https://doi.org/10.1016/j.foodchem.2010.08.036
  16. Enda H, Sagane Y, Nakazawa Y, Sato H, Yamazaki M. Data on free amino acid contents in Japanese basket clams (Corbicula japonica) from Lake Abashiri and Abashirigawa River. Data Br. 2018;16:639-43. https://doi.org/10.1016/j.dib.2017.11.075
  17. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
  18. Tepe B, Sokmen M, Akpulat HA, Daferera D, Polissiou M, Sokmen A. Antioxidative activity of the essential oils of Thymus sipyleus subsp. sipyleus var. sipyleus and Thymus sipyleus subsp. sipyleus var. rosulans. J Food Eng. 2005;66:447-54. https://doi.org/10.1016/j.jfoodeng.2004.04.015
  19. Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys. 1994;315:161-9. https://doi.org/10.1006/abbi.1994.1485
  20. Oyaizu M. Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr. 1986;44:307-15. https://doi.org/10.5264/eiyogakuzashi.44.307
  21. Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol. 1971;20:1637-48. https://doi.org/10.1016/0006-2952(71)90292-9
  22. Paolella S, Falavigna C, Faccini A, Virgili R, Sforza S, Dall'Asta C, et al. Effect of dry-cured ham maturation time on simulated gastrointestinal digestion: characterization of the released peptide fraction. Food Res Int. 2015;67:136-44. https://doi.org/10.1016/j.foodres.2014.10.026
  23. Gallego M, Mauri L, Aristoy MC, Toldra F, Mora L. Antioxidant peptides profile in dry-cured ham as affected by gastrointestinal digestion. J Funct Foods. 2020;69:103956. https://doi.org/10.1016/j.jff.2020.103956
  24. Xing LJ, Hu YY, Hu HY, Ge QF, Zhou GH, Zhang WG. Purification and identification of antioxidative peptides from dry-cured Xuanwei ham. Food Chem. 2016;194:951-8. https://doi.org/10.1016/j.foodchem.2015.08.101
  25. Escudero E, Sentandreu MA, Arihara K, Toldra F. Angiotensin I-converting enzyme inhibitory peptides generated from in vitro gastrointestinal digestion of pork meat. J Agric Food Chem. 2010;58:2895-901. https://doi.org/10.1021/jf904204n
  26. Escudero E, Toldra F, Sentandreu MA, Nishimura H, Arihara K. Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat. Meat Sci. 2012;91:382-4. https://doi.org/10.1016/j.meatsci.2012.02.007
  27. Muguruma M, Ahhmed AM, Katayama K, Kawahara S, Maruyama M, Nakamura T. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: evaluation of its antihypertensive effects in vivo. Food Chem. 2009;114:516-22. https://doi.org/10.1016/j.foodchem.2008.09.081
  28. Nakashima Y, Arihara K, Sasaki A, Mio H, Ishikawa S, Itoh M. Antihypertensive activities of peptides derived from porcine skeletal muscle myosin in spontaneously hypertensive rats. J Food Sci. 2002;67:434-7. https://doi.org/10.1111/j.1365-2621.2002.tb11424.x
  29. Diep TT, Yoo MJY, Rush E. Effect of in vitro gastrointestinal digestion on amino acids, polyphenols and antioxidant capacity of tamarillo yoghurts. Int J Mol Sci. 2022;23:2526. https://doi.org/10.3390/ijms23052526
  30. Weng TM, Chen MT. Changes of protein in natto (a fermented soybean food) affected by fermenting time. Food Sci Technol Res. 2010;16:537-42. https://doi.org/10.3136/fstr.16.537
  31. Xu N, Chen G, Liu H. Antioxidative categorization of twenty amino acids based on experimental evaluation. Molecules. 2017;22:2066. https://doi.org/10.3390/molecules22122066
  32. Abu-Serie MM, El-Gamal BA, El-Kersh MA, El-Saadani MA. Investigation into the antioxidant role of arginine in the treatment and the protection for intralipid-induced nonalcoholic steatohepatitis. Lipids Health Dis. 2015;14:128. https://doi.org/10.1186/s12944-015-0124-0
  33. Li XY, Liu Y, Jiang WD, Jiang J, Wu P, Zhao J, et al. Co- and post-treatment with lysine protects primary fish enterocytes against Cu-induced oxidative damage. PLOS ONE. 2016;11:e0147408. https://doi.org/10.1371/journal.pone.0147408
  34. Elias RJ, Kellerby SS, Decker EA. Antioxidant activity of proteins and peptides. Crit Rev Food Sci Nutr. 2008;48:430-41. https://doi.org/10.1080/10408390701425615
  35. Park SY, Chin KB. Antioxidant activities of pepsin hydrolysates of water- and salt-soluble protein extracted from pork hams. Int J Food Sci Technol. 2011;46:229-35. https://doi.org/10.1111/j.1365-2621.2010.02454.x
  36. Segura-Campos M, Chel-Guerrero L, Betancur-Ancona D, Hernandez-Escalante VM. Bioavailability of bioactive peptides. Food Rev Int. 2011;27:213-26. https://doi.org/10.1080/87559129.2011.563395
  37. Acquah C, Di Stefano E, Udenigwe CC. Role of hydrophobicity in food peptide functionality and bioactivity. J Food Bioact. 2018;4:88-98. https://doi.org/10.31665/JFB.2018.4164
  38. Zhu CZ, Zhang WG, Kang ZL, Zhou GH, Xu XL. Stability of an antioxidant peptide extracted from Jinhua ham. Meat Sci. 2014;96:783-9. https://doi.org/10.1016/j.meatsci.2013.09.004
  39. Chen MC, Sonaje K, Chen KJ, Sung HW. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials. 2011;32:9826-38. https://doi.org/10.1016/j.biomaterials.2011.08.087
  40. Korhonen H, Pihlanto-Leppala A, Rantamaki P, Tupasela T. Impact of processing on bioactive proteins and peptides. Trends Food Sci Technol. 1998;9:307-19. https://doi.org/10.1016/S0924-2244(98)00054-5
  41. Clausen MR, Skibsted LH, Stagsted J. Characterization of major radical scavenger species in bovine milk through size exclusion chromatography and functional assays. J Agric Food Chem. 2009;57:2912-9. https://doi.org/10.1021/jf803449t
  42. Shalaby EA, Shanab SMM. Antioxidant compounds, assays of determination and mode of action. Afr J Pharm Pharmacol. 2013;7:528-39. https://doi.org/10.5897/AJPP2013.3474
  43. Zhu CZ, Zhang WG, Zhou GH, Xu XL. Identification of antioxidant peptides of Jinhua ham generated in the products and through the simulated gastrointestinal digestion system. J Sci Food Agric. 2016;96:99-108. https://doi.org/10.1002/jsfa.7065
  44. Keska P, Stadnik J. Effect of in vitro gastro-pancreatic digestion on antioxidant activity of low-molecular-weight (<3.5 kDa) peptides from dry-cured pork loins with probiotic strains of LAB. Int J Food Sci Technol. 2021;56:6268-78. https://doi.org/10.1111/ijfs.15066
  45. Gurley SB, Coffman TM. The renin-angiotensin system and diabetic nephropathy. Semin Nephrol. 2007;27:144-52. https://doi.org/10.1016/j.semnephrol.2007.01.009
  46. Mora L, Gallego M, Toldra F. ACEI-inhibitory peptides naturally generated in meat and meat products and their health relevance. Nutrients. 2018;10:1259. https://doi.org/10.3390/nu10091259
  47. Zhuo JL, Ferrao FM, Zheng Y, Li XC. New frontiers in the intrarenal renin-angiotensin system: a critical review of classical and new paradigms. Front Endocrinol. 2013;4:166. https://doi.org/10.3389/fendo.2013.00166
  48. Toldra F, Reig M, Aristoy MC, Mora L. Generation of bioactive peptides during food processing. Food Chem. 2018;267:395-404. https://doi.org/10.1016/j.foodchem.2017.06.119
  49. Vercruysse L, Van Camp J, Morel N, Rouge P, Herregods G, Smagghe G. Ala-Val-Phe and Val-Phe: ACE inhibitory peptides derived from insect protein with antihypertensive activity in spontaneously hypertensive rats. Peptides. 2010;31:482-8. https://doi.org/10.1016/j.peptides.2009.05.029
  50. Hernandez-Ledesma B, del Mar Contreras M, Recio I. Antihypertensive peptides: production, bioavailability and incorporation into foods. Adv Colloid Interface Sci. 2011;165:23-35. https://doi.org/10.1016/j.cis.2010.11.001
  51. Shimizu M. Food-derived peptides and intestinal functions. BioFactors. 2004;21:43-7. https://doi.org/10.1002/biof.552210109
  52. Woo JY, Gu W, Kim KA, Jang SE, Han MJ, Kim DH. Lactobacillus pentosus var. plantarum C29 ameliorates memory impairment and inflammaging in a D-galactose-induced accelerated aging mouse model. Anaerobe. 2014;27:22-6. https://doi.org/10.1016/j.anaerobe.2014.03.003
  53. Boguszewska D, Grudkowska M, Zagdanska B. Drought-responsive antioxidant enzymes in potato (Solanum tuberosum L.). Potato Res. 2010;53:373-82. https://doi.org/10.1007/s11540-010-9178-6
  54. Vlasova II. Peroxidase activity of human hemoproteins: keeping the fire under control. Molecules. 2018;23:2561. https://doi.org/10.3390/molecules23102561
  55. Chen X, Xiang L, Jia G, Liu G, Zhao H, Huang Z. Effects of dietary leucine on antioxidant activity and expression of antioxidant and mitochondrial-related genes in longissimus dorsi muscle and liver of piglets. Anim Sci J. 2019;90:990-8. https://doi.org/10.1111/asj.13249
  56. Liang M, Wang Z, Li H, Cai L, Pan J, He H, et al. l-Arginine induces antioxidant response to prevent oxidative stress via stimulation of glutathione synthesis and activation of Nrf2 pathway. Food Chem Toxicol. 2018;115:315-28. https://doi.org/10.1016/j.fct.2018.03.029
  57. Hamman JH, Enslin GM, Kotze AF. Oral delivery of peptide drugs: barriers and developments. BioDrugs. 2005;19:165-77. https://doi.org/10.2165/00063030-200519030-00003
  58. Kompella UB, Lee VHL. Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev. 2001;46:211-45. https://doi.org/10.1016/S0169-409X(00)00137-X
  59. Chourasia MK, Jain SK. Pharmaceutical approaches to colon targeted drug delivery systems. J Pharm Pharm Sci. 2003;6:33-66.
  60. Lee SY, Lee DY, Hur SJ. Changes in the stability and antioxidant activities of different molecular weight bioactive peptide extracts obtained from beef during in vitro human digestion by gut microbiota. Food Res Int. 2021;141:110116. https://doi.org/10.1016/j.foodres.2021.110116
  61. Jaworska K, Koper M, Ufnal M. Gut microbiota and renin-angiotensin system: a complex interplay at local and systemic levels. Am J Physiol Gastrointest Liver Physiol. 2021;321:G355-66. https://doi.org/10.1152/ajpgi.00099.2021
  62. Mafra D, Borges NA, de Franca Cardozo LFM, Anjos JS, Black AP, Moraes C, et al. Red meat intake in chronic kidney disease patients: two sides of the coin. Nutrition. 2018;46:26-32. https://doi.org/10.1016/j.nut.2017.08.015
  63. Akbar MF. Inhibition of indoxyl sulfate-induced intrarenal renin-angiotensin system activation: targeting the aryl hydrocarbon receptor. Transl Clin Pharmacol. 2017;25:114-6. https://doi.org/10.12793/tcp.2017.25.3.114
  64. Aiemratchanee P, Panyawechamontri K, Phaophu P, Reamtong O, Panbangred W. In vitro antihypertensive activity of bioactive peptides derived from porcine blood corpuscle and plasma proteins. Int J Food Sci Technol. 2021;56:2315-24. https://doi.org/10.1111/ijfs.14853
  65. Volpe M, Tocci G, Pagannone E. Activation of the renin-angiotensin-aldosterone system in heart failure. Ital Heart J. 2005;6:16S-23S.
  66. Ge X, Zheng L, Zhuang R, Yu P, Xu Z, Liu G, et al. The gut microbial metabolite trimethylamine N-oxide and hypertension risk: a systematic review and dose-response meta-analysis. Adv Nutr. 2020;11:66-76. https://doi.org/10.1093/advances/nmz064
  67. Liu M, Han Q, Yang J. Trimethylamine-N-oxide (TMAO) increased aquaporin-2 expression in spontaneously hypertensive rats. Clin Exp Hypertens. 2019;41:312-22. https://doi.org/10.1080/10641963.2018.1481420