DOI QR코드

DOI QR Code

Performance based plastic design of friction damped RC building

  • Mithu Dey (Department of Civil Engineering, National Institute of Technical Teachers' Training & Research) ;
  • Md Saniyal Alam (Department of Civil Engineering, National Institute of Technical Teachers' Training & Research)
  • Received : 2023.06.06
  • Accepted : 2024.08.27
  • Published : 2024.04.25

Abstract

As a supplemental energy dissipation device, friction dampers are widely employed to augment the behaviour of buildings under seismic forces. In the current work, a methodology for the design of the friction damping system of RC frame buildings is offered using performance-based plastic design (PBPD) method. Here 2% of maximum interstorey drift ratio for life safety (LS) level is taken into account as a target drift to estimate the design base shear. In this approach, the distribution of friction damper is determined based on the hysteretic energy demand of that storey. Two frames, five storey three bay (5S3B) and eight storey three bay (8S3B) RC frame building with and without friction damping systems are also taken up for the investigation. The suggested design approach is validated by the nonlinear time history analysis (NLTHA) procedure. Inter story drift ratio (ISDR) and storey displacement, which are the more closely related to structural damage during seismic excitation are evaluated. The results show that the friction damping system on a retrofitted RC frame building performs effectively under seismic excitations and that storey displacement and ISDR are within the limit at moderate and high seismic intensities.

Keywords

References

  1. Anoushehei, M., Daneshjoo, F. and Mahboubi, S. (2017), "Experimental investigation on hysteretic behavior of rotational friction dampers with new friction materials", Steel Compos. Struct., Int. J., 24(2), 239-248. https://doi.org/10.12989/scs.2017.24.2.239
  2. Armaly, M., Damerji, H., Hallal, J. and Fakih, M. (2019), "Effectiveness of friction dampers on the seismic behavior of high rise building VS shear wall system", Eng. Reports, 1, e12075. https://doi.org/10.1002eng2.12075 https://doi.org/10.1002eng2.12075
  3. ASCE 41-06 (2006), Seismic rehabilitation of existing buildings, ASCE/SEI 41-06, Reston, VA, USA.
  4. Banerjee, S. and Patro, S.K. (2016), "Inelastic seismic response of building with friction dampe", J. Inst. Engr. (India): Series A, 97, 395-404. https://doi.org/10.1007/s40030-016-0184-9
  5. Chao, S.H. and Goel, S.C. (2008), "Performance-based plastic design of seismic resistant special truss moment frames", AISC Engg. J. Second Quarter, pp. 127-150.
  6. Chaudhury, D. and Singh, Y. (2014), "Performance-based design of RC frame buildings with metallic and friction dampers", J. Inst. Engr. (India), 95(4), 239-247. https://doi.org/10.1007/s40030-014-0089-4
  7. CSI (2023), SAP 2000 v.24, Integrated Software for Structural Analysis and Design; Computers and Struct. Inc., Berkeley, CA, USA.
  8. Daniel, Y., Lavan, O. and Levy, R. (2012), "A simple methodology for the seismic passive control of irregular 3D frames using friction dampers", Geo. Geol. Earthq. Eng., 285-295. https://doi.org/10.1007/978-94-007-5377-8_19
  9. FEMA 356 (2000), "Prestandard and commentary for the seismic rehabilitation of building", Washington, USA, 2000.
  10. Filiatrault, A. and Cherry, S. (1990), "Seismic design spectra for friction-damped structures", J. Struct. Eng., 116(5), 1334-1355. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:5(1334)
  11. Goel, S.C. and Chao, S.H. (2008), "Performance-Based Plastic Design", Earthquake Resistant Steel Structures, International Code Council: Washington, DC, USA.
  12. Goel, S.C., Liao, W.C., Reza Bayat, M. and Chao, S.H. (2010), "Performance-based plastic design (PBPD) method for earthquake-resistant structures: an overview", Struct. Des. Tall Spec. Build., 19(1-2), 115-137. https://doi.org/10.1002/tal.547
  13. Housner, G.W. (1956), "Limit design of structures to resist earthquakes", Proceedings of First World Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Berkeley, CA, USA, June, Part 5: pp. 1-11.
  14. IS 456 (2000), Plain and reinforced concrete - code of practice, Bureau of Indian Standards, New Delhi, India.
  15. IS 800 (2007), General construction in steel- code of practices, Bureau of Indian Standards, New Delhi, India.
  16. IS 1893 (2016), Criteria for earthquake resistant design of structures, Part 1, General provision and buildings; Bureau of Indian Standards, New Delhi, India.
  17. IS 13920 (2016), Ductile design and detailing of reinforced concrete structures subjected to a seismic forces, Part 1, Bureau of Indian Standards, New Delhi, India.
  18. Kim, J., Choi, H. and Min, K.W. (2011), "Use of rotational friction dampers to enhance seismic and progressive collapse resisting capacity of structures", Struct. Design Tall Spec. Build., 20, 515-537. https://doi.org/10.1002/tal.563
  19. Lee, S.H., Park, J.H., Lee, S.K. and Min, K.W. (2008a), "Allocation and slip load of friction dampers for a seismically excited building structure based on storey shear force distribution", Eng. Struct., 30(4), 930-940. https://doi.org/10.1016/j.engstruct.2007.03.020
  20. Lee, S.K., Park, J.H., Moon, B.W., Min, K.W., Lee, S.H. and Kim, J. (2008b), "Design of a bracing-friction damper system for seismic retrofitting", Smart Struct. Syst., Int. J., 4(5), 685-696. https://doi.org/10.12989/sss.2008.4.5.685
  21. Liao, W.C. (2010), "Performance-based plastic design of earthquake resistant reinforced concrete moment frames", Ph.D. Dissertation; University of Michigan, USA.
  22. Lin, X., Moss, P.J. and Carr, A.J. (2000), "Seismic analysis and design of building structures with supplemental lead dampers", Proceedings of 12th World Conference of Earthquakes and Engineering, Auckland, New Zealand.
  23. Miguel, L.F.F., Miguel, L.F.F. and Lopez, R.H. (2018), "Methodology for the simultaneous optimization of location and parameters of friction dampers in the frequency domain", Eng. Optim., 50(12), 2108-2122. https://doi.org/10.1080/ 0305215X.2018.1428318
  24. Min, K.W., Seong, J.Y. and Kim, J. (2010), "Simple design procedure of a friction damper for reducing seismic responses of a single-story structure", Eng. Struct., 32(11), 3539-3547. https://doi.org/10.1016/j.engstruct.2010.07.022
  25. Miri, M. and Kahkeshan, A. (2014), "Seismic evaluation and studying the effect of friction damper", Int. J. Eng. Tech., 3(2), 137-154. https://doi.org/10.14419/ijet.v3i2.2040
  26. Moreschi, L.M. and Singh, M.P. (2003), "Design of yielding metallic and friction dampers for optimal seismic performance", Earthq. Eng. Struct. Dyn., 32, 1291-1311. https://doi.org/10.1002/eqe.275
  27. Nabid, N., Hajirasouliha, I. and Petkovski, M. (2019), "Simplified method for optimal design of friction damper slip loads by considering near-field and far-field ground motions", J. Earthq. Eng., 25(9), 1851-1875. https://doi.org/10.1080/13632469.2019.1605316
  28. Newmark, N.M. and Hall, W.J. (1982), "Earthquake Spectra and Design (EERI monograph series)", Earthquake Engineering Research Institute, Oakland, CA, USA.
  29. PEER (2013), Pacific Earthquake Engineering Research Centre, Strong ground motion database. http://www.peer.berkley.edu/
  30. Sahoo, D.R. and Chao, S.H. (2010), "Performance-based plastic design of buckling-restrained braced frames", Eng. Struct., 32(9), 2950-2958. doi.org/10.1016/j.engstruct.2010.05.014
  31. Sahoo, D.R. and Rai, D.C. (2013), "Seismic strengthening of non ductile reinforced concrete frames using aluminum shear links as energy-dissipation devices", Eng. Struct., 32(11), 3548-3557. https://doi.org/10.1016/j.engstruct.2010.07.023
  32. Samani, H.R., Mirtaheri, M. and Rafiee, M. (2015), "The effects of various slippage loads on the response modification factor of steel structures equipped with frictional dampers", Int. J. Struct. Stabil. Dyn., 15(6). https://doi.org/10.1142/S0219455414500801
  33. Samani, H.R., Mirtaheri, M. and Ardebili, M.A.H. (2016), "A frictional damping based design methodology for structures", Proceedings of the Institution of Civil Engineers, Structures and Buildings, 169(SB3), 174-183. https://doi.org/10.1680/jstbu.14.00027
  34. Sanghai, S. and Pawade, P. (2021), "Optimal placement of friction dampers in building considering nonlinearity of soil", Innov. Infrastruct. Solut., 6, 28. https://doi.org/10.1007/s41062-020-00395-8
  35. Sanghai, S. and Pawade, P. (2022), "Performance evaluation of friction dampers for building with soil-structure interaction", Mater. Today: Proceedings, 60(1), 194-210. https://doi.org/10.1016/j.matpr.2021.12.439
  36. SAP2000 (2023), Integrated Software for Structural Analysis and Design of Structures; Computers and Structures Inc., Berkeley, CA, USA.
  37. Seong, J.Y., Min, K.W. and Kim, J.C. (2012), "Analytical investigation of an SDOF building structure equipped with a friction damper", Nonlinear Dyn., 70, 217-229. https://doi.org/10.1007/s11071-012-0446-7
  38. Shirkhani, A., Mualla, I.H., Shabakhty, N. and Mousavi, S.R. (2015), "Behavior of steel frames with rotational friction dampers by endurance time method", J. Constr. Steel Res., 107, 211-222. https://doi.org/10.1016/j.jcsr.2015.01.016
  39. Taiyari, F., Mazzolani, F.M. and Bagheri, S. (2019), "Damage-based optimal design of friction dampers in multistory chevron braced steel frames", Soil Dyn. Earthq. Eng., 119, 11-20. https://doi.org/10.1016/j.soildyn.2019.01.004