DOI QR코드

DOI QR Code

Direct Lagrangian-based FSI formulation for seismic analysis of reinforced concrete circular liquid-containing tanks

  • Erfan Shafei (Faculty of Civil Engineering, Urmia University of Technology) ;
  • Changiz Gheyratmand (Faculty of Civil Engineering, Urmia University) ;
  • Saeed Tariverdilo (Faculty of Civil Engineering, Urmia University)
  • Received : 2023.08.01
  • Accepted : 2024.03.24
  • Published : 2024.09.25

Abstract

In this study, a direct Lagrangian-based three-dimensional computational procedure is developed to evaluate the seismic performance of reinforced concrete liquid-containing circular tanks (RC-LCT). In this approach, fluid-structure interaction (FSI), material nonlinearity, and liquid-structure large deformations are formulated realistically. Liquid is modeled using Mie-Grüneisen equation of state (EOS) in compressible form considering the convective and impulsive motions of fluid. The developed numerical framework is validated based on a previous study. Further, nonlinear analyses are carried out to assess the seismic performance of RC-LCT with various diameter-to-liquid height ratios ranging from 2.5 to 4.0. Based on observations, semi-deep tanks (i.e., D/Hl=2.5) show low collapse ductility due to their shear failure mode while shallow tanks (i.e., D/Hl=4.0) behave in a more ductile manner due to their dominant wall membrane action. Furthermore, the semi-deep tanks provide the least over-strength and ductility due to their catastrophic failure with little energy dissipation. This study shows that LCTs can be categorized as between immediately operational and life safety levels and therefore a drift limiting criterion is necessary to prevent probable damages during earthquakes.

Keywords

References

  1. ACI350.3 (2020), Seismic Design of Liquid-containing Concrete Structures and Commentary (ACI 350.320), American Concrete Institute, Farmington Hills, MI, USA.
  2. Bilyk, S., Grinfeld, M. and Segletes, S. (2013), "Operational equations of state for hydrocode: Computer implementation", Proc. Eng., 58, 424-432. https://doi.org/10.1016/j.proeng.2013.05.049.
  3. Chen, J. and Kianoush, M. (2005), "Seismic response of concrete rectangular tanks for liquid containing structures", Can. J. Civil Eng., 32(4), 739-752. https://doi.org/10.1139/l05023.
  4. Chiou, B., Darragh, R., Gregor, N. and Silva, W. (2008), "NGA project strong-motion database", Earthq. Spectra, 24(1), 23-44. https://doi.org/10.1193/1.2894831.
  5. Cho, J.R. and Lee, J.K. (2002), "Axisymmetrical free vibration analysis of liquid-storage tanks considering the liquid compressibility", Struct. Eng. Mech., 13(4), 355-368. https://doi.org/10.12989/sem.2002.13.4.355.
  6. Chopra, A.K. (2005), Earthquake Dynamics of Structures: A Primer, 2nd Edition, Earthquake Engineering Research Institute (EERI), Oakland, CA, USA.
  7. Curadelli, O. (2013), "Equivalent linear stochastic seismic analysis of cylindrical base-isolated liquid storage tanks", J. Constr. Steel Res., 83, 166-176. https://doi.org/10.1016/j.jcsr.2012.12.022.
  8. Dutta, S.C., Murty, C. and Jain, S.K. (2000), "Seismic torsional vibration in elevated tanks", Struct. Eng. Mech., 9(6), 615-636. https://doi.org/10.12989/sem.2000.9.6.615.
  9. EN and BS (2004), Eurocode 2: Design of Concrete Structures, European Committee for Standardization, Brussels, Belgium.
  10. Fiore, A., Demartino, C., Greco, R., Rago, C., Sulpizio, C. and Vanzi, I. (2018), "Seismic performance of spherical liquid storage tanks: A case study", Int. J. Adv. Struct. Eng., 10(2), 121-130. https://doi.org/10.1007/s4009101801851.
  11. Housner, G.W. (1963), "The dynamic behavior of water tanks", Bull. Seismol. Soc. Am., 53(2), 381-387. https://doi.org/10.1785/BSSA0530020381.
  12. Huang, J. and Zhao, X. (2018), "Control of three-dimensional nonlinear slosh in moving rectangular containers", J. Dyn. Syst. Measure. Control, 140(8), 081016. https://doi.org/10.1115/1.4039278.
  13. Jing, W., Chen, P. and Song, Y. (2020), "Shock absorption of concrete liquid storage tank with different kinds of isolation measures", Earthq. Struct., 18, 467-480. https://doi.org/10.12989/eas.2020.18.4.467.
  14. Kalogerakou, M.E., Maniatakis, C.A., Spyrakos, C.C. and Psarropoulos, P.N. (2017), "Seismic response of Liquid-containing tanks with emphasis on the hydrodynamic response and near-fault phenomena", Eng. Struct., 153, 383-403. https://doi.org/10.1016/j.engstruct.2017.09.026.
  15. Kildashti, K., Mirzadeh, N. and Samali, B. (2018), "Seismic vulnerability assessment of a case study anchored liquid storage tank by considering fixed and flexible base restraints", Thin Wall. Struct., 123, 382-394. https://doi.org/10.1016/j.tws.2017.11.041.
  16. Kim, M.K., Lim, Y.M., Cho, S.Y., Cho, K.H. and Lee, K.W. (2002), "Seismic analysis of base-isolated liquid storage tanks using the BE-FE-BE coupling technique", Soil Dyn. Earthq. Eng., 22(912), 1151-1158. https://doi.org/10.1016/S02677261(02)001422.
  17. LSTC (2007), LSDYNA Keyword User's Manual Version 971, Livermore Software Technology Corporation, Livermore, CA, USA.
  18. Maedeh, P.A., Ghanbari, A. and Wu, W. (2017), "Estimation of elevated tanks natural period considering fluid-structure-soil interaction by using new approaches", Earthq. Struct., 12(2), 145-152. https://doi.org/10.12989/eas.2017.12.2.145.
  19. Mandal, K.K. and Maity, D. (2015), "Nonlinear finite element analysis of elastic water storage tanks", Eng. Struct., 99, 666-676. https://doi.org/10.1016/j.engstruct.2015.04.050.
  20. Mandal, K.K. and Maity, D. (2016), "Nonlinear finite element analysis of water in rectangular tank", Ocean Eng., 121, 592-601. https://doi.org/10.1016/j.oceaneng.2016.05.048.
  21. Nayak, C.B. and Thakare, S.B. (2019), "Seismic performance of existing water tank after condition ranking using nondestructive testing", Int. J. Adv. Struct. Eng., 11(4), 395-410. https://doi.org/10.1007/s4009101900241x.
  22. Oden, J.T. (2006), Finite Elements of Nonlinear Continua, Courier Corporation, North Chelmsford, MA, USA.
  23. Ramsey, S.D., Schmidt, E.M., Boyd, Z.M., Lilieholm, J.F. and Baty, R.S. (2018), "Converging shock flows for a Mie-Gruneisen equation of state", Phys. Fluids, 30(4), 046101. https://doi.org/10.1063/1.5018323.
  24. Rezaiee-Pajand, M. and Kazemiyan (2016), "Analytical solution for free vibration of flexible 2D rectangular tanks", Ocean Eng., 122, 118-135. https://doi.org/10.1016/j.oceaneng.2016.05.052.
  25. Seleemah, A.A. and El-Sharkawy, M. (2011), "Seismic analysis and modeling of isolated elevated liquid storage tanks", Earthq. Struct., 2(4), 397-412. https://doi.org/10.12989/eas.2011.2.4.397.
  26. Shyue, K.M. (2001), "A fluid-mixture type algorithm for compressible multicomponent flow with Mie-Gruneisen equation of state", J. Comput. Phys., 171(2), 678-707. https://doi.org/10.1006/jcph.2001.6801.
  27. Spritzer, J. and Guzey, S. (2017), "Nonlinear numerical evaluation of large open-top aboveground steel welded liquid storage tanks excited by seismic loads", Thin Wall. Struct., 119, 662-676. https://doi.org/10.1016/j.tws.2017.07.017.
  28. Standard, N. (2005), NS 3473 E Concrete Structures: Design Rules, Norwegian Council for Building Standardization, Oslo, Norway.
  29. Vern, S., Shrimali, M.K., Bharti, S.D. and Datta, T.K. (2021), "Evaluation of the seismic response of liquid storage tanks", Earthq. Struct., 21(2), 205-217. https://doi.org/10.12989/eas.2021.21.2.205.
  30. Zanni, A.A., Spyridis, M.S. and Karabalis, D.L. (2020), "Discrete model for circular and square rigid tanks with concentric openings-Seismic analysis of a historic water tower", Eng. Struct., 211, 110433. https://doi.org/10.1016/j.engstruct.2020.110433.
  31. Zhang, R., Cheng, X., Guan, Y. and Tarasenko, A.A. (2017), "Seismic response analysis of an unanchored vertical vaulted-type tank", Earthq. Struct., 13(1), 67. https://doi.org/10.12989/eas.2017.13.1.067.
  32. Zhou, D. and Liu, W. (2007), "Hydro-elastic vibrations of flexible rectangular tanks partially filled with liquid", Int. J. Numer. Method. Eng., 71(2), 149-174. https://doi.org/10.1002/nme.1921.