DOI QR코드

DOI QR Code

A Novel Deep Learning Based Architecture for Measuring Diabetes

  • Shaima Sharaf (Department of Computer Science, TKM Institute of Technology)
  • Received : 2024.09.05
  • Published : 2024.09.30

Abstract

Diabetes is a chronic condition that happens when the pancreas fails to produce enough insulin or when the body's insulin is ineffectively used. Uncontrolled diabetes causes hyperglycaemia, or high blood sugar, which causes catastrophic damage to many of the body's systems, including the neurons and blood vessels, over time. The burden of disease on the global healthcare system is enormous. As a result, early diabetes diagnosis is critical in saving many lives. Current methods for determining whether a person has diabetes or is at risk of acquiring diabetes, on the other hand, rely heavily on clinical biomarkers. This research presents a unique deep learning architecture for predicting whether or not a person has diabetes and the severity levels of diabetes from the person's retinal image. This study incorporates datasets such as EyePACS and IDRID, which comprise Diabetic Retinopathy (DR) images and uses Dense-121 as the base due to its improved performance.

Keywords

References

  1. B.Tymchenko, P. Marchenko, and D. Spodarets, ''Deep learning approach to diabetic retinopathy detection,'' in Proc. 9th Int. Conf. Pattern Recognit.Appl. Methods, 2020, pp. 501-509.
  2. A. Bora, S. Balasubramanian, B. Babenko, S. Virmani, S. Venugopalan, A. Mitani, G. de Oliveira Marinho, J. Cuadros, P. Ruamviboonsuk, G. S. Corrado, L. Peng, D. R. Webster, A. V. Varadarajan, N. Hammel, Y. Liu, and P. Bavishi, ''Predicting the risk of developing diabetic retinopathy using deep learning,'' Lancet Digit. Health, vol. 3, no. 1, pp. e10-e19, Jan. 2021.
  3. L. Qiao, Y. Zhu and H. Zhou, "Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms," in IEEE Access, vol. 8, pp. 104292-104302, 2020, doi: 10.1109/ACCESS.2020.2993937.
  4. S. Qummar et al., "A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection," in IEEE Access, vol. 7, pp. 150530-150539, 2019, doi: 10.1109/ACCESS.2019.2947484.
  5. Z. Khan et al., "Diabetic Retinopathy Detection Using VGGNIN a Deep Learning Architecture," in IEEE Access, vol. 9, pp. 61408-61416, 2021, doi: 10.1109/ACCESS.2021.3074422.
  6. A. Bilal, G. Sun, Y. Li, S. Mazhar and A. Q. Khan, "Diabetic Retinopathy Detection and Classification Using Mixed Models for a Disease Grading Database," in IEEE Access, vol. 9, pp. 23544-23553, 2021, doi: 10.1109/ACCESS.2021.3056186
  7. M. T. Islam, H. R. H. Al-Absi, E. A. Ruagh and T. Alam, "DiaNet: A Deep Learning Based Architecture to Diagnose Diabetes Using Retinal Images Only," in IEEE Access, vol. 9, pp. 15686-15695, 2021, doi: 10.1109/ACCESS.2021.3052477.
  8. J. Cuadros and G. Bresnick, ''EyePACS: An adaptable telemedicine system for diabetic retinopathy screening,'' J. Diabetes Sci. Technol., vol. 3, no. 3, pp. 509-516, May 2009.
  9. B. Graham, ''Kaggle diabetic retinopathy detection competition report,'' Univ. Warwick, Coventry, U.K., Tech. Rep., 2015.
  10. J. Deng, W.Dong, R.Socher, L.-J. Li, K. Li, and L. Fei-Fei, ''ImageNet: A large-scale hierarchical image database,'' in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 248-255.
  11. G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ''Densely connected convolutional networks,'' in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 4700-4708
  12. A. Krizhevsky, I. Sutskever, and G. E. Hinton, ''ImageNet classication with deep convolutional neural networks,'' in Proc. Adv. Neural Inf. Pro- cess. Syst. (NIPS), Stateline, NV, USA, vol. 25, Dec. 2012, pp. 1097-1105