References
- B.Tymchenko, P. Marchenko, and D. Spodarets, ''Deep learning approach to diabetic retinopathy detection,'' in Proc. 9th Int. Conf. Pattern Recognit.Appl. Methods, 2020, pp. 501-509.
- A. Bora, S. Balasubramanian, B. Babenko, S. Virmani, S. Venugopalan, A. Mitani, G. de Oliveira Marinho, J. Cuadros, P. Ruamviboonsuk, G. S. Corrado, L. Peng, D. R. Webster, A. V. Varadarajan, N. Hammel, Y. Liu, and P. Bavishi, ''Predicting the risk of developing diabetic retinopathy using deep learning,'' Lancet Digit. Health, vol. 3, no. 1, pp. e10-e19, Jan. 2021.
- L. Qiao, Y. Zhu and H. Zhou, "Diabetic Retinopathy Detection Using Prognosis of Microaneurysm and Early Diagnosis System for Non-Proliferative Diabetic Retinopathy Based on Deep Learning Algorithms," in IEEE Access, vol. 8, pp. 104292-104302, 2020, doi: 10.1109/ACCESS.2020.2993937.
- S. Qummar et al., "A Deep Learning Ensemble Approach for Diabetic Retinopathy Detection," in IEEE Access, vol. 7, pp. 150530-150539, 2019, doi: 10.1109/ACCESS.2019.2947484.
- Z. Khan et al., "Diabetic Retinopathy Detection Using VGGNIN a Deep Learning Architecture," in IEEE Access, vol. 9, pp. 61408-61416, 2021, doi: 10.1109/ACCESS.2021.3074422.
- A. Bilal, G. Sun, Y. Li, S. Mazhar and A. Q. Khan, "Diabetic Retinopathy Detection and Classification Using Mixed Models for a Disease Grading Database," in IEEE Access, vol. 9, pp. 23544-23553, 2021, doi: 10.1109/ACCESS.2021.3056186
- M. T. Islam, H. R. H. Al-Absi, E. A. Ruagh and T. Alam, "DiaNet: A Deep Learning Based Architecture to Diagnose Diabetes Using Retinal Images Only," in IEEE Access, vol. 9, pp. 15686-15695, 2021, doi: 10.1109/ACCESS.2021.3052477.
- J. Cuadros and G. Bresnick, ''EyePACS: An adaptable telemedicine system for diabetic retinopathy screening,'' J. Diabetes Sci. Technol., vol. 3, no. 3, pp. 509-516, May 2009.
- B. Graham, ''Kaggle diabetic retinopathy detection competition report,'' Univ. Warwick, Coventry, U.K., Tech. Rep., 2015.
- J. Deng, W.Dong, R.Socher, L.-J. Li, K. Li, and L. Fei-Fei, ''ImageNet: A large-scale hierarchical image database,'' in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 248-255.
- G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ''Densely connected convolutional networks,'' in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 4700-4708
- A. Krizhevsky, I. Sutskever, and G. E. Hinton, ''ImageNet classication with deep convolutional neural networks,'' in Proc. Adv. Neural Inf. Pro- cess. Syst. (NIPS), Stateline, NV, USA, vol. 25, Dec. 2012, pp. 1097-1105