Abstract
The concept of social stratification and hierarchy among human dates back to the origin of human race. Presently, the growing reputation of social networks has given us with an opportunity to analyze these well-studied phenomena over different networks at different scales. Generally, a social network could be defined as a collection of actors and their interactions. In this work, we concern ourselves with a particular type of social networks, known as trust networks. In this type of networks, there is an explicit show of trust (positive interaction) or distrust (negative interaction) among the actors. In other words, an actor can designate others as friends or foes. Trust networks are typically modeled as signed networks. A signed network is a directed graph in which the edges carry an edge weight of +1 (indicating trust) or -1 (indicating distrust). Examples of signed networks include the Slashdot Zoo network, the Epinions network and the Wikipedia adminship election network. In a social network, actors tend to connect with each other on the basis of their perceived social hierarchy. The emergence of such a hierarchy within a social community shows the manner in which authority manifests in the community. In the case of signed networks, the concept of social hierarchy can be interpreted as the emergence of a tree-like structure comprising of actors in a top-down fashion in the order of their ranks, describing a specific parent-child relationship, viz. child trusts parent. However, owing to the presence of positive as well as negative interactions in signed networks, deriving such "trust hierarchies" is a non-trivial challenge. We argue that traditional notions (of unsigned networks) are insufficient to derive hierarchies that are latent within signed networks In order to build hierarchies in signed networks, we look at two interpretations of trust namely presence of trust (or "good") and lack of distrust (or "not bad"). In order to develop a hierarchy signifying both trust and distrust effectively, the above interpretations are combined together for calculating the overall trustworthiness (termed as deserve) of actors. The actors are then arranged in a hierarchical fashion based on these aggregate deserve values, according to the following hypothesis: actor v is assigned as a child of actor u if: (i) v trusts u, and (ii) u has a higher deserve value than v. We describe this hypothesis with additional qualifiers in this thesis.