DOI QR코드

DOI QR Code

Numerical, Machine Learning and Deep-Learning based Framework for Weather Prediction

  • Bhagwati Sharan (Department of Computer Science and Engineering, School of Engineering and Sciences, SRM University-AP) ;
  • Mohammad Husain (Department of Computer Science, Faculty of Computer and Information Systems, Islamic University of Madinah Kingdom of Saudi Arabia) ;
  • Mohammad Nadeem Ahmed (Department of Computer Science, King Khalid University) ;
  • Anil Kumar Sagar (Department of Computer Science and Engineering, School of Engineering and Technology, Sharda University) ;
  • Arshad Ali (Faculty of Computer and Information Systems, Islamic University of Madinah Al Madinah Al Munawarah) ;
  • Ahmad Talha Siddiqui (Department of CS&IT, Maulana Azad National Urdu University) ;
  • Mohammad Rashid Hussain (College of Business, Department of Management Information Systems)
  • 투고 : 2024.09.05
  • 발행 : 2024.09.30

초록

Weather forecasting has become a very popular topic nowadays among researchers because of its various effects on global lives. It is a technique to predict the future, what is going to happen in the atmosphere by analyzing various available datasets such as rain, snow, cloud cover, temperature, moisture in the air, and wind speed with the help of our gained scientific knowledge i.e., several approaches and set of rules or we can say them as algorithms that are being used to analyze and predict the weather. Weather analysis and prediction are required to prevent nature from natural losses before it happens by using a Deep Learning Approach. This analysis and prediction are the most challenging task because of having multidimensional and nonlinear data. Several Deep Learning Approaches are available: Numerical Weather Prediction (NWP), needs a highly calculative mathematical equation to gain the present condition of the weather. Quantitative precipitation nowcasting (QPN), is also used for weather prediction. In this article, we have implemented and analyzed the various distinct techniques that are being used in data mining for weather prediction.

키워드

과제정보

The researchers wish to extend their sincere gratitude to the Deanship of Scientific Research at the Islamic University of Madinah for the support provided to the Post-Publishing Program 2.

참고문헌

  1. Reichstein, Markus., Camps-Valls, Gustau., Stevens, Bjorn., Jung, Martin., Denzler, Joachim., Carvalhais, Nuno., & Prabhat. Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195-204, doi:10.1038/s41586-019-0912-1. 
  2. Gneiting, Tillman., Raftery, Adrian E., Atmospheric Science. Weather Forecasting with Ensemble Methods. Science 2005, 310, 248-249, doi:10.1126/science.1115255. 
  3. Marchuk, G. Numerical Methods in Weather Prediction; Academic Press: San Diego, CA, 1974; ISBN 9780124706507. 
  4. Blockeel, Hendrik. Declarative Data Analysis. Int. J. Data Sci. Anal. 2018, 6, 217-223, doi:10.1007/s41060-017-0081-y. 
  5. Abraham, Ajith., Philip, Ninan Sajeeth., Nath, Baikunth., & Saratchandran, P. Performance Analysis of Connectionist Paradigms for Modeling Chaotic Behavior of Stock Indices. Second International Workshop on Intelligent Systems Design and Applications, Computational Intelligence and Applications, Dynamic Publishers Inc., USA 2002, January, 181-186. 
  6. Zhang, Dan., Deng, Jin. The Data Mining of the Human Resources Data Warehouse in University Based on Association Rule. J. Comput. 2011, 6, doi:10.4304/jcp.6.1.139-146. 
  7. Bauer, Peter.; Thorpe, Alan.; Brunet, Gilbert. The Quiet Revolution of Numerical Weather Prediction. Nature 2015, 525, 47-55, doi:10.1038/nature14956. 
  8. Maqsood, Imran.; Khan, Muhammad Riaz.; Abraham, Ajith. An Ensemble of Neural Networks for Weather Forecasting. Neural Comput. Appl. 2004, 13, doi:10.1007/s00521-004-0413-4. 
  9. Mohan, Pushpa.; Patil, Kiran Kumari. Survey on Crop and Weather Forecasting Based on Agriculture Related Statistical Data; International Journal of Innovative Research in Computer and Communication Engineering. 
  10. Shivaranjani, M.P., Karthikeyan, K. A Review of Weather Forecasting Using Data Mining Techniques. Int. J. Eng. Comput. Sci. 2018, Retrieved from https://ijecs.in/index.php/ijecs/article/view/3522. 
  11. Taksande, Amruta A.; Mohod, P.S. Applications of Data Mining in Weather Forecasting Using Frequent Pattern Growth Algorithm; International Journal of Science and Research, 2015. 
  12. Reddyl, Basvanth.; Patil, B.A. Weather Prediction Based on Big Data Using Hadoop Map Reduce Technique; International Journal of Advanced Research in Computer and Communication Engineering, 2016. 
  13. Ramesh, M.; Swarajhyam, S.; Prathyush, B. Big Data Approach and Using Data Mining Techniques in Weather Prediction. Int. J. Comput. Appl. Technol. Res. 2017, 6, 473-479, doi:10.7753/ijcatr0612.1002. 
  14. Chen, Shyi-Ming.; Hwang, Jeng-Ren. Temperature Prediction Using Fuzzy Time Series. IEEE Trans. Syst. Man Cybern. B Cybern. 2000, 30, 263-275, doi:10.1109/3477.836375. 
  15. Kwong, Ka Ming.; Liu, James N. K.; Chan, P.W.; Lee, Raymond. Using LIDAR Doppler Velocity Data and Chaotic Oscillatory-Based Neural Network for the Forecast of Meso-Scale Wind Field. In Proceedings of the 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence); IEEE, 2008. 
  16. Afshin, Sarah, Fahmi, Hedayat., Alizadeh, Amin., Sedghi, Hussen., Kaveh, Foreidoon. Long Term Rainfall Forecasting by Integrated Artificial Neural Network-Fuzzy Logic-Wavelet Model in Karoon Basin. Scientific Research and Essays 2011, 6, 1200-1208. 
  17. Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. Learning Internal Representations by Error Propagation. In Readings in Cognitive Science; Elsevier, 1988; pp. 399-421 ISBN 9781483214467. 
  18. Milleo, Carla., Almeida, Ricardo Carvalho de., Application of RBF Artificial Neural Networks to Precipitation and Temperature Forecasting in Parana, Brazil. Cienc. Nat. 2021, 43, e40, doi:10.5902/2179460x43258. 
  19. Kruizinga, Seijo., Murphy, Allan H. Use of an Analogue Procedure to Formulate Objective Probabilistic Temperature Forecasts in the Netherlands. Mon. Weather Rev. 1983, 111, 2244-2254, doi: 10.1175/1520-0493(1983)111<2244:UOAAPT>2.0.CO;2 
  20. Abdel-Aal, R.E.; Elhadidy, M.A. Modeling and Forecasting the Daily Maximum Temperature Using Abductive Machine Learning. Weather Forecast. 1995, 10, 310-325, doi:10.1175/1520-0434(1995)010<0310:maftdm>2.0.co;2. 
  21. Glahn, Harry R.; Lowry, Dale A. The Use of Model Output Statistics (MOS) in Objective Weather Forecasting. J. Appl. Meteorol. 1972, 11, 1203-1211, doi:10.1175/1520-0450(1972)011<1203:tuomos>2.0.co;2. 
  22. Salman, Afan Galih., Kanigoro, Bayu; Heryadi, Yaya. Weather Forecasting Using Deep Learning Techniques. In Proceedings of the 2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS); IEEE, 2015, doi:10.1109/ICACSIS.2015.7415154. 
  23. Yonekura, Kazuo.; Hattori, Hitoshi.; Suzuki, Taiji. Short-Term Local Weather Forecast Using Dense Weather Station by Deep Neural Network. In Proceedings of the 2018 IEEE International Conference on Big Data (Big Data); IEEE, 2018, doi: 10.1109/BigData.2018.8622195. 
  24. Shi, Xingjian.; Chen, Zhourong.; Wang, Hao.; Yeung, Dit-Yan.; Wong, Wai-kin.; Woo, Wang-chun. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. arXiv [cs.CV] 2015, doi: 10.48550/arXiv.1506.04214. 
  25. Hossain, Moinul., Rekabdar, Banafsheh., Louis, Sushil J., Dascalu, Sergiu. Forecasting the Weather of Nevada: A Deep Learning Approach. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN); IEEE, 2015., doi: 10.1109/IJCNN.2015.7280812. 
  26. Roy, Debneil Saha. Forecasting the Air Temperature at a Weather Station Using Deep Neural Networks. Procedia Comput. Sci. 2020, 178, 38-46, doi: 10.1016/j.procs.2020.11.005. 
  27. Akram, Mohamed.; Amrani, Chaker El. Sequence to Sequence Weather Forecasting with Long Short-Term Memory Recurrent Neural Networks. Int. J. Comput. Appl. 2016, 143, 7-11, doi:10.5120/ijca2016910497. 
  28. Anusha, N.; Sai Chaithanya, M.; Jithendranath Reddy, Guru. Weather Prediction Using Multi Linear Regression Algorithm. IOP Conf. Ser. Mater. Sci. Eng. 2019, 590, 012034, doi:10.1088/1757-899x/590/1/012034. 
  29. Gruben M Austin Weather 2017. 
  30. Mohan Saini, L., and Kumar Soni, M. Artificial Neural Network-Based Peak Load Forecasting Using Conjugate Gradient Methods. IEEE Trans. Power Syst. 2002, 17, 907-912, doi:10.1109/tpwrs.2002.800992. 
  31. Goswami, Shruti., Sagar, Anil Kumar., Nand, Parma., Khalaf, Osamah Ibrahem. Time Series Analysis Using Stacked LSTM Model for Indian Stock Market. 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET) 2022, doi: 10.1109/GlobConET53749.2022.9872386. 
  32. Xu, Wenqing., Ning, Like.; Luo, Yong. Wind Speed Forecast Based on Post-Processing of Numerical Weather Predictions Using a Gradient Boosting Decision Tree Algorithm. Atmosphere (Basel) 2020, 11, 738, doi:10.3390/atmos11070738. 
  33. Erdem, Ergin.; Shi, Jing. ARMA Based Approaches for Forecasting the Tuple of Wind Speed and Direction. Appl. Energy 2011, 88, 1405-1414, doi:10.1016/j.apenergy.2010.10.031. 
  34. Chen, Niya., Qian, Zheng., Nabney, Ian T. Wind Power Forecasts Using Gaussian Processes and Numerical Weather Prediction. IEEE Trans. Power Syst. 2014, 29, 656-665, doi:10.1109/tpwrs.2013.2282366. 
  35. Golden, Richard M. Mathematical Methods for Neural Network Analysis and Design; MIT Press: London, England, 1997; ISBN 9780262071741. 
  36. Perez-Vega, Abraha., Travieso, Carlos M., Hernandez-Travieso, Jose Gustavo., Alonso, Jesus B., Dutta, Malay Kishore.; Singh, Anushikha. Forecast of Temperature Using Support Vector Machines. In Proceedings of the 2016 International Conference on Computing, Communication and Automation (ICCCA); IEEE, 2016, doi: 10.1109/CCAA.2016.7813752 
  37. Kavya Reddy, D.L., Negi, K., Soumya, D.R., Kumar, G.P., Sahana, S., Sagar, A.K. Real-Time Face Mask Detection Using CNN in Covid-19 Aspect. Lecture Notes in Electrical Engineering 2022, 327-344. 
  38. Szegedy, Christian., Liu, Wei., Jia, Yangqing., Sermanet, Pierre., Reed, Scott., Anguelov, Dragomir., Erhan, Dumitru., Vanhoucke, Vincent., Rabinovich, Andrew. Going Deeper with Convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); IEEE, 2015. Doi: 1109/CVPR.2015.7298594  1109/CVPR.2015.7298594
  39. Cheng, Gong., Yang, Ceyuan., Yao, Xiwen., Guo, Lei., Han, Junwei. When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811-2821, doi:10.1109/tgrs.2017.2783902. 
  40. Li, Shuai., Li, Wanqing., Cook, C.; Zhu, Chris.; Zhu, Ce., Gao, Yanbo. Independently Recurrent Neural Network (IndRNN): Building A Longer and Deeper RNN. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition; IEEE, 2018, doi: 10.1109/CVPR.2018.00572 
  41. Roesch, Isabelle., Gunther, Tobias. Visualization of Neural Network Predictions for Weather Forecasting: Visualization of Neural Network Predictions for Weather Forecasting. Comput. Graph. Forum 2019, 38, 209-220, doi:10.1111/cgf.13453. 
  42. Schmidhuber, Jurgen., Hochreiter., Sepp. Long Short-Term Memory; Neural Comput, 1997, doi:10.1162/neco.1997.9.8.1735. 
  43. Venugopalan, Subhashini., Xu, Huijuan., Donahue, Jeff., Rohrbach, Marcus., Mooney, Raymond., Saenko, Kate. Translating Videos to Natural Language Using Deep Recurrent Neural Networks. In Proceedings of the Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies; Association for Computational Linguistics: Stroudsburg, PA, USA, 2015, doi:48550/arXiv.1412.4729  48550/arXiv.1412.4729
  44. Donahue, Jeff., Hendricks, Lisa Anne.; Rohrbach, Marcus.; Venugopalan, Subhashini.; Guadarrama, Sergio.; Saenko, Kate.; Darrell, Trevor. Long-Term Recurrent Convolutional Networks for Visual Recognition and Description. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 677-691, doi:10.1109/TPAMI.2016.2599174. 
  45. Uyanik, Gulden Kaya.; Guler, Nese. A Study on Multiple Linear Regression Analysis. Procedia Soc. Behav. Sci. 2013, 106, 234-240, doi:10.1016/j.sbspro.2013.12.027. 
  46. Min, Dae-Hong., Yoon, Hyung-Koo. Suggestion for a New Deterministic Model Coupled with Machine Learning Techniques for Landslide Susceptibility Mapping. Sci Rep 2021, 11, doi: 10.1038/s41598-021-86137-x 
  47. Dalto, Mladen.; Matusko, Jadranko.; Vasak, Mario. Deep Neural Networks for Ultra-Short-Term Wind Forecasting. In Proceedings of the 2015 IEEE International Conference on Industrial Technology (ICIT); IEEE, 2015. 
  48. Van Craenendonck, Toon.; Blockeel, Hendrik. Constraint-Based Clustering Selection. arXiv [stat.ML] 2016, doi: 10.48550/arXiv.1609.07272