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HORADAM 3-PARAMETER GENERALIZED QUATERNIONS

Zehra İşbı̇lı̇r and Nurten Gürses∗

Abstract. The purpose of this article is to bring together the Horadam
numbers and 3-parameter generalized quaternions, which are a general

form of the quaternion algebra according to 3-parameters. With this

purpose, we introduce and examine a new type of quite big special num-
bers system, which is called Horadam 3-parameter generalized quater-

nions (shortly, Horadam 3PGQs), and special cases of them. Besides,

we compute both some new equations and classical well-known equations
such as; Binet formulas, generating function, exponential generating func-

tion, Poisson generating function, sum formulas, Cassini identity, polar

representation, and matrix equation. Furthermore, this article concludes
by presenting the determinant, characteristic polynomial, characteristic

equation, eigenvalues, and eigenvectors in relation to the matrix repre-

sentation of Horadam 3PGQ.

1. Introduction

Throughout history, number systems have been an attractive concept for
lots of researchers in several disciplines because they have been used in lots
of areas and there are several applications. One of the most popular number
systems is the quaternions, which were investigated by William Rowan Hamil-
ton in order to extend the complex numbers in 1843 [17–19]. The quaternion
algebra is a non-commutative, associative, and 4-dimensional Clifford algebra.
Several applications and usage areas can be listed in many disciplines, such as;
mathematics (especially in graph theory, computer sciences, and differential
geometry), physics, and others. The set of the quaternions (real or Hamilton’s
quaternions) is represented by

H := {q|q = q0 + q1e1 + q2e2 + q3e3, q0, q1, q2, q3 ∈ R},
where e1, e2, e3 are quaternionic units, which satisfy the following rules,
e21 = e22 = e23 = −1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = e1,
e3e1 = −e1e3 = e2 [17–19]. After investigating the real quaternions, the split
quaternions were studied by James Cockle [11]. The split quaternions hold the
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following rules e21 = −1, e22 = e23 = 1, e1e2 = −e2e1 = e3, e2e3 = −e3e2 = −e1,
e1e2e3 = 1 [11]. Further away, the generalized quaternions (or 2-parameter
generalized quaternions, shortly 2PGQs) have been examined in lots of studies
(see [12, 14, 31–33, 38, 43–45, 58]). The set of 2PGQs is denoted as Hλ1λ2

and
identified as

Hλ1λ2 := {q|q = q0 + q1e1 + q2e2 + q3e3, q0, q1, q2, q3, λ1, λ2 ∈ R},

where the quaternionic units e1, e2, e3 satisfy the following rules:

e21 = −λ1, e
2
2 = −λ2, e23 = −λ1λ2,

e1e2 = −e2e1 = e3, e2e3 =− e3e2 = λ2e1, e3e1 = −e1e3 = λ1e2.

For λ1 = λ2 = 1, q is a real quaternion; for λ1 = 1, λ2 = −1, q is a
split quaternion; for λ1 = 1, λ2 = 0, q is a semi-quaternion; for λ1 = −1,
λ2 = 0, q is a split semi-quaternion, and for λ1 = λ2 = 0, q is a 1/4-
quaternion [11,12,14,19,31–33,38,39,43–45,48,49,58].

On the other hand, T. D. Şentürk and Z. Ünal have introduced a new type
of quaternion family, which is called the 3-parameter generalized quaternion
(shortly, 3PGQ) in [48, 49]. In order to achieve a generalization of real, split,
and 2PGQ, the authors derive a comprehensive understanding of the quaternion
algebra based on the 3-parameters. The set of 3PGQs is denoted by K and
defined as

K := {q = q0 + q1e1 + q2e2 + q3e3, q0, q1, q2, q3, λ1, λ2, λ3 ∈ R},

where the quaternionic units e1, e2, e3 satisfy the rules given in Table 1.

Table 1. Multiplication rules of quaternionic units for 3PGQ
[48,49].

. 1 e1 e2 e3
1 1 e1 e2 e3
e1 e1 −λ1λ2 λ1e3 −λ2e2
e2 e2 −λ1e3 −λ1λ3 λ3e1
e3 e3 λ2e2 −λ3e1 −λ2λ3

According to the values λi∈{1,2,3}, we get some special cases. The following
Table 2 includes some special cases of 3PGQs. Also, the other types of special
cases can be studied for λi∈{1,2,3} [48, 49].

Table 2. Classification of 3PGQs [48,49].
For Some Types of 3PGQs

λ1 = 1, λ2, λ3 ∈ R 2PGQs [12,14,31–33,38,43–45,58]

λ1 = 1, λ2 = 1, λ3 = −1 Split quaternion [11]

λ1 = 1, λ2 = 1, λ3 = 1 Hamilton quaternions [17–19]

λ1 = 1, λ2 = 1, λ3 = 0 Semi-quaternions [39,44]

λ1 = 1, λ2 = −1, λ3 = 0 Split semi-quaternions [44]

λ1 = 1, λ2 = 0, λ3 = 0 1/4-quaternions [19,44]
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In addition, special sequences (or numbers) are interesting and quite popular
work-frames for several researchers. Accordingly, a great number of studies
have been done and are ongoing, and they are linked to them in different
ways when the existing literature is examined. In this paper, we deal with
the generalization of the second-order recurrence sequences, called Horadam
sequence (or numbers) [29]. Some of the most popular special cases of Horadam
numbers are the Fibonacci and Lucas numbers (see [36, 50]). For all n ≥ 2,
the Horadam numbers ({Qn(Q0, Q1; r, s)}n≥0 or {Qn}n≥0) satisfy the following
recurrence relation

(1) Qn = rQn−1 + sQn−2,

where the initial values Q0 = a,Q1 = b are arbitrary integers and r, s are real
numbers [51]. For more detailed information about Horadam numbers and
special cases of them, the studies [20,22–24,26–29,37,51–53] can be examined.

One can observe that bringing together the various types of quaternions
and special recurrence sequence components is quite an attractive concept for
several researchers in the literature. Horadam [21,25] and Iyer [30] studied the
Fibonacci quaternions and quaternion recurrence, and Swamy obtained the
generalized Fibonacci quaternions in [54]. Polatlı et al. introduced the split k-
Fibonacci and k-Lucas quaternions in [40]. Additionally, Halıcı investigated the
Fibonacci quaternions and a new generalization of them in [15,16], respectively.
Tan gave a new generalization of Fibonacci quaternions in [56]. Also, in [55] Ja-
cobsthal quaternions, in [10] Pell and Pell-Lucas quaternions were examined.
Catarino introduced the h(x)-Fibonacci quaternions in [7] and modified Pell
and modified k-Pell quaternions in [8]. Tokeşer et al. studied the split Pell and
Pell-Lucas quaternions in [57]. Then, Flaut and Savin determined the general-
ized Fibonacci-Lucas quaternions [13], as well. The generalization of Fibonac-
ci/Lucas quaternions was studied in [41, 42]. Akyiğit et al. examined the split
Fibonacci/Lucas quaternions [1] and generalized (2-parameter) Fibonacci/Lu-
cas quaternions [2]. In [46], Şentürk et al. scrutinized the unrestricted Horadam
generalized quaternions and Horadam hybrid numbers [47]. k-Fibonacci and
k-Lucas generalized quaternions were obtained by Bilgici et al. [4]. Yüce and
Torunbalcı Aydın examined the dual Fibonacci quaternions [61] and general-
izations of them [60]. Moreover, Bród introduced the split Horadam quater-
nions in [6]. Then, Bilgici investigated the Fibonacci and Lucas 3PGQs [3],
and Jacobsthal and Jacobsthal-Lucas 3PGQ in [5]. Also, [59] determined the
dual Fibonacci and Lucas 3PGQs. Recently, Chaker and Boua examined the
generalized quaternions algebra with generalized Fibonacci quaternions in [9].
Also, Kızılateş and Kibar determined the 3PGQs with higher order generalized
Fibonacci numbers components in [35].

In this study, we intend to combine the Horadam numbers and 3PGQ;
namely, we investigate 3PGQ with Horadam numbers components. Also, we ex-
amine the recurrence relation, Binet formula, generating function, exponential
generating function, Poisson generating function, summing formulas, matrix



410 Zehra İşbilir and Nurten Gürses

formulas, Cassini identity, and some special equations as well. The subsequent
analysis involves the examination of the determinant, characteristic polyno-
mial, characteristic equation, eigenvalues, and eigenvectors in relation to the
matrix representation of Horadam 3PGQ.

2. Preliminaries

In this section, we recall some terminology that is used throughout this
paper with respect to both 3PGQs and Horadam numbers.

For q = q0 + q1e1 + q2e2 + q3e3, p = p0 + p1e1 + p2e2 + p3e3 ∈ K, taking
into account the rules in Table 1, some basic algebraic properties are listed
below [48,49]:

✴ Equality: q = p ⇔ q0 = p0, q1 = p1, q2 = p2, q3 = p3.

✴ Addition and subtraction:

q ± p = q0 ± p0 + (q1 ± p1)e1 + (q2 ± p2)e2 + (q3 ± p3)e3.

✴ Multiplication by a scalar: cq = cq0 + cq1e1 + cq2e2 + cq3e3, c ∈ R.
✴ Scalar and vector part: q occurs from scalar and vector part such as;

q = Sq + Vq, where Sq = q0 is scalar part and Vq = q1e1 + q2e2 + q3e3 is
vector part.

✴ Multiplication: qp = SqSp − f(Vq, Vp) + SqVq + SpVp + Vq ∧ Vp,
where

f(Vq, Vp) = λ1λ2q1p1 + λ1λ3q2p2 + λ2λ3q3p3

and

Vq ∧ Vp =

∣∣∣∣∣∣
λ3e1 λ2e2 λ1e3
q1 q2 q3
p1 p2 p3

∣∣∣∣∣∣ .
Here Vq ∧Vp = λ3(q2p3− q3p2)e1+λ2(q3p1− q1p3)e2+λ1(q1p2− q2p1)e3.

✴ Conjugation: q = q0 − q1e1 − q2e2 − q3e3.

✴ Inverse: q−1 =
q

Nq
=

q0 − q1e1 − q2e2 − q3e3

q20 + λ1λ2q21 + λ1λ3q22 + λ2λ3q23
, where Nq ̸= 0.

✴ Inner product: ⟨q, p⟩ = q0p0 + λ1λ2q1p1 + λ1λ3q2p2 + λ2λ3q3p3.

✴ Norm: Nq = qq = qq = q20 + λ1λ2q
2
1 + λ1λ3q

2
2 + λ2λ3q

2
3 .

They can be seen easily that Sq±p = q0 ± p0 = Sq ± Sp, Vq±p = Vq ± Vp and
q = Sq − Vq. If Nq = 1, then q is a 3-parameter generalized unit quaternion.
For more detailed terminology for 3PGQs, we refer to the studies [48,49].

Also, for Nq > 0 and λ1λ2q
2
1 + λ1λ3q

2
2 + λ2λ3q

2
3 ̸= 0, q can be written in a

polar form as follows:

q =
√
Nq (cos θ + q̂ sin θ) ,



Horadam 3-parameter generalized quaternions 411

where

q̂ =
1√

λ1λ2q21 + λ1λ3q22 + λ2λ3q23
(q1, q2, q3) .

Here

cos θ =
q0√
Nq

, sin θ =

√
λ1λ2q

2
1 + λ1λ3q

2
2 + λ2λ3q

2
3

Nq

,

and q̂ is called 3-parameter generalized unit vector. Moreover for q, the follow-
ing fundamental matrix Mq is constructed:

Mq =


q0 −λ1λ2q1 −λ1λ3q2 −λ2λ3q3
q1 q0 −λ3q3 λ3q2
q2 λ2q3 q0 −λ2q1
q3 −λ1q2 λ1q1 q0

 .

According to the values of λi∈{1,2,3}, we can classify the matrixMq. For λ1 = 1,
λ2, λ3 ∈ R, the fundamental matrix for 2PGQ is constructed. For λ1 = 1,
λ2 = 1, λ3 = −1, then the fundamental matrix for split quaternions is given.
Also, for λ1 = λ2 = λ3 = 1, then the fundamental matrix for Hamilton quater-
nions is written.

Additionally, one can give some algebraic calculations for Mq: the determi-
nant of Mq is det (Mq) = N2

q . The characteristic polynomial of Mq is:

PMq
(t) =

(
t2 − 2tq0 + q20 + λ1λ2q

2
1 + λ1λ3q

2
2 + λ2λ3q

2
3

)2
.

Hence, the characteristic equation of Mq is:

det (Mq − tI4) = 0 ⇔ PMq (t) =
(
t2 − 2tq0 + q20 + λ1λ2q

2
1 + λ1λ3q

2
2 + λ2λ3q

2
3

)2
= 0.

It enables to compute the eigenvalues as follows:

t1,2 = q0 +
√

−λ1λ2q21 − λ1λ3q22 − λ2λ3q23 ,

t3,4 = q0 −
√
−λ1λ2q21 − λ1λ3q22 − λ2λ3q23 .

This gives the relation:

t1,2t3,4 = q20 + λ1λ2q
2
1 + λ1λ3q

2
2 + λ2λ3q

2
3 = Nq.

The eigenvectors corresponding to the eigenvalue t1,2 are computed as:(
λ1q2

√
−λ1λ2q

2
1−λ1λ3q

2
2−λ2λ3q

2
3−λ1λ2q1q3

λ1q
2
2+λ2q

2
3

q3
√

−λ1λ2q
2
1−λ1λ3q

2
2−λ2λ3q

2
3+λ1q1q2

λ1q
2
2+λ2q

2
3

1 0

)T

and(
λ2q3

√
−λ1λ2q

2
1−λ1λ3q

2
2−λ2λ3q

2
3+λ1λ2q1q2

λ1q
2
2+λ2q

2
3

− q2
√

−λ1λ2q
2
1−λ1λ3q

2
2−λ2λ3q

2
3−λ2q1q3

λ1q
2
2+λ2q

2
3

0 1

)T

.

The eigenvectors corresponding to the eigenvalue t3,4 are(
λ1q2

√
−λ1λ2q

2
1−λ1λ3q

2
2−λ2λ3q

2
3+λ1λ2q1q3

λ1q
2
2+λ2q

2
3

− q3
√

−λ1λ2q
2
1−λ1λ3q

2
2−λ2λ3q

2
3−λ1q1q2

λ1q
2
2+λ2q

2
3

1 0

)T
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and(
−λ2q3

√
−λ1λ2q

2
1−λ1λ3q

2
2−λ2λ3q

2
3−λ1λ2q1q2

λ1q
2
2+λ2q

2
3

q2
√

−λ1λ2q
2
1−λ1λ3q

2
2−λ2λ3q

2
3+λ2q1q3

λ1q
2
2λ2q

2
3

0 1

)T

.

On the other hand, the characteristic equation of Horadam numbers (see equa-
tion (1)) is x2 − rx− s = 0, and its roots are as follows:

x1 =
r +

√
r2 + 4s

2
and x2 =

r −
√
r2 + 4s

2
,

where x1 + x2 = r and x1x2 = −s [24, 51]. The Binet formula for Horadam
numbers is [24,51]:

(2) Qn =
Axn

1 −Bxn
2

x1 − x2

,

where

(3) A = Q1 −Q0x2 and B = Q1 −Q0x1.

The Horadam sequence can be classified with respect to the initial conditions
and r, s values. In the following Table 3, some of its members are given [24,51]:

Table 3. Some special cases of Horadam numbers.
Name {Qn} = {Qn(Q0,Q1; r, s)} Recurrence Relation

Fibonacci {Fn} = {Qn(0, 1; 1, 1)} Fn = Fn−1 + Fn−2

Lucas {Ln} = {Qn(2, 1; 1, 1)} Ln = Ln−2 + Ln−3

Pell {Pn} = {Qn(0, 1; 2, 1)} Pn = 2Pn−1 + Pn−2

Pell-Lucas {Bn} = {Qn(2, 2; 2, 1)} Bn = 2Bn−1 + Bn−2

Jacobsthal {Jn} = {Qn(0, 1; 1, 2)} Jn = Jn−1 + 2Jn−2

Jacobsthal-Lucas {Cn} = {Qn(2, 1; 1, 2)} Cn = Cn−1 + 2Cn−2

Moreover, the following matrix equation for Horadam numbers can be writ-
ten depending on the r and s values such that ( [34,51]):(

Qn+1

Qn

)
=

(
r s
1 0

)n (
Q1

Q0

)
.

3. Horadam 3-Parameter Generalized Quaternions

This section presents Horadam 3PGQs as a novel family of special number
systems. Also, we examine some algebraic properties and obtain the Binet for-
mula, generating function, exponential generating function, Poisson generating
function, some summation formulas, matrix equations, Cassini identity, polar
representation, and some new interesting equations. Also, via the matrix rep-
resentation of Horadam 3PGQ, we get some properties such as; determinant,
characteristic polynomial and equation, eigenvalues, and eigenvectors.
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Definition 3.1. Let Qn be nth Horadam 3PGQ. Then, it is defined as

(4) Qn = Qn +Qn+1e1 +Qn+2e2 +Qn+3e3 for every n ≥ 0,

where Qn is the nth Horadam number and e1, e2 and e3 satisfy the rules given
in Table 1. Also, initial values are written as{
Q0 = a+ be1 + (sa+ rb) e2 +

[
rsa+ (r2 + s)b

]
e3,

Q1 = b+ (sa+ rb) e1 +
[
rsa+ (r2 + s)b

]
e2 +

[(
r2s+ s2

)
a+

(
r3 + 2rs

)
b
]
e3.

In the following Table 4, we classify Horadam 3PGQs.

Table 4. Classification of Horadam 3PGQs.
For Types

λ1 = 1, λ2, λ3 ∈ R Horadam 2PGQ [2]

λ1 = 1, λ2 = 1, λ3 = −1 Horadam split quaternions [6]

λ1 = 1, λ2 = 1, λ3 = 1 Horadam Hamilton quaternions [15, 54]

λ1 = 1, λ2 = 1, λ3 = 0 Horadam semi-quaternions

λ1 = 1, λ2 = −1, λ3 = 0 Horadam split semi-quaternions

λ1 = 1, λ2 = 0, λ3 = 0 Horadam 1
4

-quaternions

Also, one can see Table 5 for some special cases of Horadam 3PGQs.

Table 5. Some special cases of Horadam 3PGQs.
Name Definition Recurrence

Fibonacci 3PGQ [3,35] Fn = Fn + Fn+1e1 + Fn+2e2 + Fn+3e3 Fn = Fn−1 + Fn−2

Lucas 3PGQ [3] Ln = Ln + Ln+1e1 + Ln+2e2 + Ln+3e3 Ln = Ln−1 + Ln−2

Pell 3PGQ Pn = Pn + Pn+1e1 + Pn+2e2 + Pn+3e3 Pn = 2Pn−1 + Pn−2

Pell-Lucas 3PGQ Bn = Bn + Bn+1e1 + Bn+2e2 + Bn+3e3 Bn = 2Bn−1 + Bn−2

Jacobsthal 3PGQ [5] Jn = Jn + Jn+1e1 + Jn+2e2 + Jn+3e3 Jn = Jn−1 + 2Jn−2

Jacobsthal-Lucas 3PGQ [5] Cn = Cn + Cn+1e1 + Cn+2e2 + Cn+3e3 Cn = Cn−1 + 2Cn−2

*Chaker and Boua ( [9]) examined some results on generalized quaternions
algebra with generalized Fibonacci quaternions.

Now, let us examine some algebraic properties such as equality, addition/
subtraction, multiplication by scalar, scalar and vector parts, multiplication,
conjugation, norm, inverse, and inner product of Horadam 3PGQs.

For every n,m ≥ 0, let Qn = Qn + Qn+1e1 + Qn+2e2 + Qn+3e3 and
Qm = Qm + Qm+1e1 + Qm+2e2 + Qm+3e3 be the nth and mth Horadam
3PGQ, respectively. The following properties can be obtained:

✴ Equality:

Qn = Qm ⇔ Qn = Qm, Qn+1 = Qm+1, Qn+2 = Qm+2, Qn+3 = Qm+3.

✴ Addition/Subtraction:

Qn ±Qm =Qn ±Qm + (Qn+1 ±Qm+1) e1 + (Qn+2 ±Qm+2) e2

+ (Qn+3 ±Qm+3) e3.
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✴ Multiplication by a scalar:

cQn = cQn + cQn+1e1 + cQn+2e2 + cQn+3e3, c ∈ R.

✴ Scalar and Vector Parts: The scalar part of Qn is denoted by SQn

and SQn
= Qn. Also, the vector part of Qn is denoted by VQn

and
VQn

= Qn+1e1 + Qn+2e2 + Qn+3e3. This implies that
SQn±Qm = Qn ±Qm = SQn ± SQm and VQn±Qm = VQn ± VQm .

✴ Multiplication:

QnQm = SQn
SQm

− f(VQn
, VQm

) + SQn
VQn

+ SQm
VQm

+ VQn
∧ VQm

,

where

f(VQn
, VQm

) = λ1λ2Qn+1Qm+1 + λ1λ3Qn+2Qn+2 + λ2λ3Qn+3Qn+3

and

VQn
∧ VQm

=

∣∣∣∣∣∣
λ3e1 λ2e2 λ1e3
Qn+1 Qn+2 Qn+3

Qm+1 Qm+2 Qm+3

∣∣∣∣∣∣
=λ3(Qn+2Qm+3 −Qn+3Qm+2)e1

+ λ2(Qn+3Qm+1 −Qn+1Qm+3)e2

+ λ1(Qn+1Qm+2 −Qn+2Qm+1)e3.

We can also give the following form of multiplication as

QnQm =QnQm − λ1λ2Qn+1Qm+1 − λ1λ3Qn+2Qm+2 − λ2λ3Qn+3Qm+3

+ (QnQm+1 +QmQn+1 + λ3 (Qn+2Qm+3 −Qn+3Qm+2)) e1

+ (QnQm+2 +QmQn+2 + λ2 (Qn+3Qm+1 −Qn+1Qm+3)) e2

+ (QnQm+3 +QmQn+3 + λ1 (Qn+1Qm+2 −Qn+2Qm+1)) e3.

(5)

✴ Conjugation: Qn = Qn −Qn+1e1 −Qn+2e2 −Qn+3e3.

✴ Inverse:

Q−1
n =

Qn

NQn

=
Qn −Qn+1e1 −Qn+2e2 −Qn+3e3

Q2
n + λ1λ2Q2

n+1 + λ1λ3Q2
n+2 + λ2λ3Q2

n+3

, NQn
̸= 0.

✴ Inner product:

⟨Qn,Qm⟩ =QnQm + λ1λ2Qn+1Qm+1 + λ1λ3Qn+2Qm+2

+ λ2λ3Qn+3Qm+3.

✴ Norm:

NQn = QnQn = QnQn = Q2
n + λ1λ2Q

2
n+1 + λ1λ3Q

2
n+2 + λ2λ3Q

2
n+3.

Theorem 3.2 (Recurrence Relation). Let Qn be the nth Horadam 3PGQ.
Then the following recurrence relation holds:

(6) Qn = rQn−1 + sQn−2, ∀n ≥ 2.
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Proof. By using equations (1) and (4), we obtain:

rQn−1 + sQn−2 =r (Qn−1 +Qne1 +Qn+1e2 +Qn+2e3)

+ s (Qn−2 +Qn−1e1 +Qne2 +Qn+1e3)

=rQn−1 + sQn−2 + (rQn + sQn−1) e1

+ (rQn+1 + sQn) e2 + (rQn+2 + sQn+1) e3

=Qn +Qn+1e1 +Qn+2e2 +Qn+3e3

=Qn.

This finishes the proof.

Theorem 3.3 (Binet Formula). Let Qn be the nth Horadam 3PGQ. For
every n ≥ 0, the following Binet formula is satisfied:

(7) Qn =
Axn

1 x̃1 −Bxn
2 x̃2

x1 − x2

,

where A and B are given in equation (3) and

x̃1 = 1 + x1e1 + x2
1e2 + x3

1e3, x̃2 = 1 + x2e1 + x2
2e2 + x3

2e3.

Proof. Via equations (2) and (4), the proof can be completed as follows:

Qn =Qn + Qn+1e1 + Qn+2e2 + Qn+3e3

=
Axn

1 −Bxn
2

x1 − x2
+

(
Axn+1

1 −Bxn+1
2

x1 − x2

)
e1 +

(
Axn+2

1 −Bxn+2
2

x1 − x2

)
e2 +

(
Axn+3

1 −Bxn+3
2

x1 − x2

)
e3

=
Axn

1 x̃1 −Bxn
2 x̃2

x1 − x2

,

where x̃1 = 1 + x1e1 + x2
1e2 + x3

1e3 and x̃2 = 1 + x2e1 + x2
2e2 + x3

2e3.

In following Table 6, Binet formulas of some special cases of Horadam 3PGQ
are given. In this table, (also in following Table 8 and Table 9), we use:

➢ ω1 = (1+
√
5)/2, ω2 = (1−

√
5)/2 are the roots of equation x2−x−1 = 0

and ω̃1 = 1 + ω1e1 + ω2
1e2 + ω3

1e3, ω̃2 = 1 + ω2e1 + ω2
2e2 + ω3

2e3,

➢ ν1 = 1 +
√
2, ν2 = 1−

√
2 are the roots of equation x2 − 2x− 1 = 0 and

ν̃1 = 1 + ν1e1 + ν21e2 + ν31e3, ν̃2 = 1 + ν2e1 + ν22e2 + ν32e3,
➢ µ1 = 2, µ2 = −1 are the roots of equation x2 − x− 2 = 0 (see [51]) and

µ̃1 = 1 + µ1e1 + µ2
1e2 + µ3

1e3, µ̃2 = 1 + µ2e1 + µ2
2e2 + µ3

2e3.

Table 6. Binet formulas for special cases of Horadam 3PGQs.
Name Binet Formula

Fibonacci 3PGQ [3,35] Fn = (ωn
1 ω̃1 − ωn

2 ω̃2)/
√

5

Lucas 3PGQ [3] Ln = ωn
1 ω̃1 + ωn

2 ω̃2

Pell 3PGQ Pn = (νn1 ν̃1 − ν2 ν̃2)/2
√

2

Pell-Lucas 3PGQ Bn = νn1 ν̃1 + νn2 ν̃2
Jacobsthal 3PGQ [5] Jn = (µn

1 µ̃1 − µn
2 µ̃2)/3

Jacobsthal-Lucas 3PGQ [5] Cn = µn
1 µ̃1 + µn

2 µ̃2
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Theorem 3.4 (Generating Function). Let Qn be the nth Horadam 3PGQ.
Then the following generating function is written:

∞∑
n=0

Qnx
n =

Q0 + (Q1 − rQ0)x

1− rx− sx2
.

Proof. Suppose that
∞∑

n=0
Qnx

n = Q0 + Q1x + Q2x
2 + . . . + Qnx

n + . . .

be generating function of Horadam 3PGQ. Let us multiply both sides of the
equation by rx and sx2:

rx

∞∑
n=0

Qnx
n = rQ0x+ rQ1x

2 + rQ2x
3 + . . .+ rQnx

n+1 + . . .

sx2
∞∑

n=0

Qnx
n = sQ0x

2 + sQ1x
3 + sQ2x

4 + . . .+ sQnx
n+2 + . . .

Then, by adding these two equations and considering equation (6), we get:

(1− rx− sx2)

∞∑
n=0

Qnx
n = Q0 + (Q1 − rQ0)x.

Hence, the proof is completed.

Also, the following Table 7 includes the generating functions of special cases of
Horadam 3PGQ:

Table 7. Generating functions for special cases of Horadam 3PGQs.
Name Generating Function

Fibonacci 3PGQ [3,35]
∞∑

n=0
Fnxn =

e1 + e2 + 2e3 + (1 + e2 + e3)x

1 − x− x2

Lucas 3PGQ [3]
∞∑

n=0
Lnxn =

2 + e1 + 3e2 + 4e3 + (−1 + 2e1 + e2 + 3e3)x

1 − x− x2

Pell 3PGQ
∞∑

n=0
Pnxn =

e1 + 2e2 + 5e3 + (1 + e2 + 2e3)

1 − 2x− x2

Pell-Lucas 3PGQ
∞∑

n=0
Bnxn =

2 + 2e1 + 6e2 + 14e3 + (−2 + 2e1 + 2e2 + 6e3)x

1 − 2x− x2

Jacobsthal 3PGQ [5]
∞∑

n=0
Jnxn =

e1 + e2 + 3e3 + (1 + 2e2 + 2e3)x

1 − x− 2x2

Jacobsthal-Lucas 3PGQ [5]
∞∑

n=0
Cnxn =

2 + e1 + 5e2 + 7e3 + (−1 + 4e1 + 2e2 + 10e3)x

1 − x− 2x2

Theorem 3.5 (Exponential Generating Function). Let Qn be the nth Ho-
radam 3PGQ. Then the exponential generating function is written as:

(8)

∞∑
n=0

Qn

yn

n!
=

Aex1y x̃1 −Bex2y x̃2

x1 − x2

.
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Proof. By using equation (7), we have:
∞∑

n=0

Qn

yn

n!
=

∞∑
n=0

Axn
1 x̃1

x1 − x2

yn

n!
−

∞∑
n=0

Bxn
2 x̃2

x1 − x2

yn

n!

=
A x̃1

x1 − x2

∞∑
n=0

xn
1y

n

n!
−

B x̃2

x1 − x2

∞∑
n=0

xn
2y

n

n!

=
Aex1y x̃1 −Bex2y x̃2

x1 − x2

.

Therefore, we get the desired result.

In addition to these, exponential functions for special cases of Horadam 3PGQs
are written in Table 8:

Table 8. Exponential functions for special cases of Horadam 3PGQs.
Name Exponential Generating Function

Fibonacci 3PGQ
∞∑

n=0
Fn

yn

n!
=

ω̃1eω1y − ω̃2eω2y

√
5

Lucas 3PGQ
∞∑

n=0
Ln

yn

n!
= ω̃1eω1y + ω̃2eω1y

Pell 3PGQ
∞∑

n=0
Pn

yn

n!
=

ν̃1eν1y − ν̃2eν2y

2
√

2

Pell-Lucas 3PGQ
∞∑

n=0
Bn

yn

n!
= ν̃1eν1y + ν̃2eν2y

Jacobsthal 3PGQ
∞∑

n=0
Jn

yn

n!
=

µ̃1eµ1y − µ̃2eµ2y

3

Jacobsthal-Lucas 3PGQ
∞∑

n=0
Cn

yn

n!
= µ̃1eµ1y + µ̃2eµ2y

Theorem 3.6 (Poisson Generating Function). Let Qn be the nth Horadam
3PGQ. The Poisson generating function is written as:

e−y
∞∑

n=0

Qn

yn

n!
=

Aex1y x̃1 −Bex2y x̃2

ey (x1 − x2)
.

Proof. With the help of equation (8), we get the desired result since the
Poisson generating function is given as multiplying the exponential generating
function by e−y (see also [47]).
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In the following Table 9, we get the Poisson generating function for special
cases of Horadam 3PGQs:

Table 9. Poisson generating function for special cases of Ho-
radam 3PGQs.

Name Poisson Generating Function

Fibonacci 3PGQ e−y
∞∑

n=0
Fn

yn

n!
=

ω̃1eω1y − ω̃2eω2y

ey
√

5

Lucas 3PGQ e−y
∞∑

n=0
Ln

yn

n!
= e−y (ω̃1eω1y + ω̃2eω1y)

Pell 3PGQ e−y
∞∑

n=0
Pn

yn

n!
=

ν̃1eν1y − ν̃2eν2y

2
√

2ey

Pell-Lucas 3PGQ e−y
∞∑

n=0
Bn

yn

n!
= e−y (ν̃1eν1y + ν̃2eν2y)

Jacobsthal 3PGQ e−y
∞∑

n=0
Jn

yn

n!
=

µ̃1eµ1y − µ̃2eµ2y

3ey

Jacobsthal-Lucas 3PGQ e−y
∞∑

n=0
Cn

yn

n!
= e−y (µ̃1eµ1y + µ̃2eµ2y)

Thanks to the study [52, 53], we can obtain the following sum formulas for
Horadam 3PGQ without proofs for the sake of brevity.

Theorem 3.7. Let Qn be the nth Horadam 3PGQ. For every n,m ∈ N,
the following summation formulas are satisfied:

(a)
m∑

n=0
Qn =

Qm+2 + (1− r)Qm+1 −Q1 + (r − 1)Q0

r + s− 1
,

(b)
m∑

n=0
Q2n =

(1 − s)Q2m+2 + rsQ2m+1 + (s− 1)Q2 − rsQ1 + (r2 − s2 + 2s− 1)Q0

(r + s− 1)(r − s + 1)
,

(c)
m∑

n=0
Q2n+1 =

rQ2m+2 + (s− s2)Q2m+1 − rQ2 + (−1 + s+ r2)Q1

(r − s+ 1)(r + s− 1)
,

where r + s− 1 ̸= 0 and (r − s+ 1)(r + s− 1) ̸= 0.

Now, we shall give some special equations for Horadam 3PGQ in the fol-
lowing Theorem 3.8 and Theorem 3.9:

Theorem 3.8. Let Qn be the nth Horadam 3PGQ. For all n ≥ 0, the
following properties hold:

(a) Qn −Qn+1e1 −Qn+2e2 −Qn+3e3
= Qn + λ1λ2Qn+2 + λ1λ3Qn+4 + λ2λ3Qn+6,

(b) Qn +Qn+1e1 +Qn+2e2 +Qn+3e3
= 2Qn − (Qn + λ1λ2Qn+2 + λ1λ3Qn+4 + λ2λ3Qn+6),

(c) Qn +Qn = 2Qn,
(d) Qn −Qn = 2Qn − 2Qn,
(e) Q2

n = 2QnQn − (Q2
n + λ1λ2Q

2
n+1 + λ1λ3Q

2
n+2 + λ2λ3Q

2
n+3),

(f) Qn
2
= −2QnQn − (−3Q2

n − λ1λ2Q
2
n+1 − λ1λ3Q

2
n+2 − λ2λ3Q

2
n+3).
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Proof. (a) By using Table 1 and equation (4), we get:

Qn −Qn+1e1 −Qn+2e2 −Qn+3e3 =Qn +Qn+1e1 +Qn+2e2 +Qn+3e3

− (Qn+1 +Qn+2e1 +Qn+3e2 +Qn+4e3)e1

− (Qn+2 +Qn+3e1 +Qn+4e2 +Qn+5e3)e2

− (Qn+3 +Qn+4e1 +Qn+5e2 +Qn+6e3)e3

=Qn + λ1λ2Qn+2 + λ1λ3Qn+4 + λ2λ3Qn+6.

(b) With the help of Table 1 and equation (4), we achieve:

Qn +Qn+1e1 +Qn+2e2 +Qn+3e3 =Qn +Qn+1e1 +Qn+2e2 +Qn+3e3

+ (Qn+1 +Qn+2e1 +Qn+3e2 +Qn+4e3)e1

+ (Qn+2 +Qn+3e1 +Qn+4e2 +Qn+5e3)e2

+ (Qn+3 +Qn+4e1 +Qn+5e2 +Qn+6e3)e3

=2Qn − (Qn + λ1λ2Qn+2 + λ1λ3Qn+4 + λ2λ3Qn+6).

(c) By means of equation (4) and conjugation of Qn, we get:

Qn +Qn =(Qn +Qn+1e1 +Qn+2e2 +Qn+3e3) + (Qn −Qn+1e1 −Qn+2e2 −Qn+3e3)

=2Qn.

(d) With the help of equation (4) and conjugation of Qn, we have:

Qn −Qn =(Qn +Qn+1e1 +Qn+2e2 +Qn+3e3)− (Qn −Qn+1e1 −Qn+2e2 −Qn+3e3)

=2Qn − 2Qn.

(e) By using equations (4) and (5), we have:

Q2
n =Q2

n − λ1λ2Q
2
n+1 − λ1λ3Q

2
n+2 − λ2λ3Q

2
n+3

+ (2QnQn+1 + λ3 (Qn+2Qn+3 −Qn+3Qn+2)) e1

+ (2QnQn+2 + λ2 (Qn+3Qn+1 −Qn+1Qn+3)) e2

+ (2QnQn+3 + λ1 (Qn+1Qn+2 −Qn+2Qn+1)) e3.

Then, we obtain

Q2
n = 2QnQn − (Q2

n + λ1λ2Q
2
n+1 + λ1λ3Q

2
n+2 + λ2λ3Q

2
n+3).

(f) By using equations (4), (5) and conjugate of Qn we attain:

Q2

n =Q2
n − λ1λ2Q

2
n+1 − λ1λ3Q

2
n+2 − λ2λ3Q

2
n+3

− 2 (QnQn+1e1 +QnQn+2e2 +QnQn+3e3) .

Then, we obtain

Qn
2
= −2QnQn − (−3Q2

n + λ1λ2Q
2
n+1 + λ1λ3Q

2
n+2 + λ2λ3Q

2
n+3).

We finished the proof.
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Theorem 3.9. Let Qn and Qm be the nth and mth Horadam 3PGQ. For
all n,m ≥ 0, the following properties can be written:

(a) QnQm−QnQm = 2[(QnQm+1 +Qn+1Qm) e1+(QnQm+2 +Qn+2Qm) e2
+ (QnQm+3 +Qn+3Qm) e3],

(b) QnQm+QnQm = 2[QnQm−λ1λ2Qn+1Qm+1−λ1λ3Qn+2Qm+2−λ2λ3Qn+3Qm+3

+ λ3(Qn+2Qm+3 −Qn+3Qm+2)e1
+ λ2(Qn+3Qm+1 −Qn+1Qm+3)e2
+ λ1(Qn+1Qm+2 −Qn+2Qm+1)e3],

(c) QnQm −QnQm = 2[(Qn+1Qm −QnQm+1)e1 +(Qn+2Qm −QnQm+2)e2
+ (Qn+3Qm −QnQm+3)e3],

(d) QnQm+QnQm = 2[QnQm+λ1λ2Qn+1Qm+1+λ1λ3Qn+2Qm+2+λ2λ3Qn+3Qm+3

+ λ3(Qn+3Qm+2 −Qn+2Qm+3)e1
+ λ2(Qn+1Qm+3 −Qn+3Qm+1)e2
+ λ1(Qn+2Qm+1 −Qn+1Qm+2)e3].

Proof. (a) Via Table 1, equation (4), conjugation and multiplication prop-
erties, we get:

QnQm −QnQm

= (Qn +Qn+1e1 +Qn+2e2 +Qn+3e3)(Qm +Qm+1e1 +Qm+2e2 +Qm+3e3)

− (Qn −Qn+1e1 −Qn+2e2 −Qn+3e3)(Qm −Qm+1e1 −Qm+2e2 −Qm+3e3)

= 2 [(QnQm+1 +Qn+1Qm)e1 + (QnQm+2 +Qn+2Qm)e2 + (QnQm+3 +Qn+3Qm)e3]

(b) With the help of Table 1, equation (4), conjugation and multiplication
properties, we obtain:

QnQm +QnQm

= (Qn +Qn+1e1 +Qn+2e2 +Qn+3e3)(Qm +Qm+1e1 +Qm+2e2 +Qm+3e3)

+ (Qn −Qn+1e1 −Qn+2e2 −Qn+3e3)(Qm −Qm+1e1 −Qm+2e2 −Qm+3e3)

= 2[QnQm − λ1λ2Qn+1Qm+1 − λ1λ3Qn+2Qm+2 − λ2λ3Qn+3Qm+3

+ λ3(Qn+2Qm+3 −Qn+3Qm+2)e1 + λ2(Qn+3Qm+1 −Qn+1Qm+3)e2

+ λ1(Qn+1Qm+2 −Qn+2Qm+1)e3].

(c) By means of Table 1, equation (4), conjugation and multiplication prop-
erties, we get:

QnQm −QnQm

= (Qn +Qn+1e1 +Qn+2e2 +Qn+3e3)(Qm −Qm+1e1 −Qm+2e2 −Qm+3e3)

− (Qn −Qn+1e1 −Qn+2e2 −Qn+3e3)(Qm +Qm+1e1 +Qm+2e2 +Qm+3e3)

= 2 [(Qn+1Qm −QnQm+1)e1 + (Qn+2Qm −QnQm+2)e2

+(Qn+3Qm −QnQm+3)e3] .
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(d) By utilizing Table 1, equation (4), conjugation and multiplication prop-
erties, we have:

QnQm +QnQm

= (Qn +Qn+1e1 +Qn+2e2 +Qn+3e3)(Qm −Qm+1e1 −Qm+2e2 −Qm+3e3)

+ (Qn −Qn+1e1 −Qn+2e2 −Qn+3e3)(Qm +Qm+1e1 +Qm+2e2 +Qm+3e3)

= 2 [QnQm + λ1λ2Qn+1Qm+1 + λ1λ3Qn+2Qm+2 + λ2λ3Qn+3Qm+3

+ λ3(Qn+3Qm+2 −Qn+2Qm+3)e1 + λ2(Qn+1Qm+3 −Qn+3Qm+1)e2

+λ1(Qn+2Qm+1 −Qn+1Qm+2)e3] .

Hence, we get what is desired.

Theorem 3.10. Let Qn be the nth Horadam 3PGQ. For every n > 0, the
following matrix properties are expressed:(

Qn+1

Qn

)
=

(
r s
1 0

)n ( Q1

Q0

)
.

Proof. By utilizing mathematical induction, we show the proof easily, so we
omit it.

Theorem 3.11 (Cassini Identity). Let Qn be the nth Horadam 3PGQ.
The following Cassini identity is satisfied:

Qn−1Qn+1 −Q2
n =

(
ABxn−1

1 xn−1
2

)
(x2 x̃1 x̃2 − x1 x̃2 x̃1)

x1 − x2

.

Proof. By using equation (4) and (7), we can complete the proof easily.

Definition 3.12. Let Qn be the nth Horadam 3PGQ. For NQn
> 0 and

λ1λ2Q
2
n+1+λ1λ3Q

2
n+2+λ2λ3Q

2
n+3 ̸= 0, polar representation ofQn is as follows:

(9) Qn =
√
NQn

(
cos θ + Q̂n sin θ

)
,

where

Q̂n =
1√

λ1λ2Q2
n+1 + λ1λ3Q2

n+2 + λ2λ3Q2
n+3

(Qn+1, Qn+2, Qn+3)

and

cos θ =
Qn√
NQn

, sin θ =

√
λ1λ2Q

2
n+1 + λ1λ3Q

2
n+2 + λ2λ3Q

2
n+3

NQn

.

Here Q̂n is called Horadam 3-parameter generalized unit vector.
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Theorem 3.13. Let Qn be the nth Horadam 3PGQ. Then, the matrix
representation of Qn can be written as follows:

(10) MQn
=


Qn −λ1λ2Qn+1 −λ1λ3Qn+2 −λ2λ3Qn+3

Qn+1 Qn −λ3Qn+3 λ3Qn+2

Qn+2 λ2Qn+3 Qn −λ2Qn+1

Qn+3 −λ1Qn+2 λ1Qn+1 Qn

 .

Here, the matrix MQn is called the fundamental matrix for Horadam 3PGQs.

Proof. By multiplyingQn = Qn+Qn+1e1+Qn+2e2+Qn+3e3 with 1, e1, e2, e3
from the left side and using Table 1, we obtain:

Qn1 = Qn +Qn+1e1 +Qn+2e2 +Qn+3e3,

Qne1 = −λ1λ2Qn+1 +Qne1 + λ2Qn+3e2 − λ1Qn+2e3,

Qne2 = −λ1λ3Qn+2 − λ3Qn+3e1 +Qne2 + λ1Qn+1e3,

Qne3 = −λ2λ3Qn+3 + λ3Qn+2e1 − λ2Qn+1e2 +Qne3.

Then, writing the coefficients of {1, e1, e2, e3} of the above equations as columns
gives the matrix in equation (10).

According to the values of λi∈{1,2,3}, the matrix MQn
can be classified. For

λ1 = 1, λ2, λ3 ∈ R, the fundamental matrix for Horadam 2PGQ is obtained.
For λ1 = λ2 = 1, λ3 = −1, then the fundamental matrix for Horadam split
quaternions is obtained. Also, for λ1 = λ2 = λ3 = 1, then the fundamental
matrix for Horadam Hamilton quaternions is obtained.

Remark 3.14. Let Qn and Qm be Horadam 3PGQs. Then, the following
can be given:

MQn
(Q∗

m)
T
= MQm

(Q∗
n)

T
= (QnQm)∗,

where the superscript ∗ represents column matrix forms. Hence, here

Q∗
n =

(
Qn Qn+1 Qn+2 Qn+3

)T
,Q∗

m =
(
Qm Qm+1 Qm+2 Qm+3

)T
and

(QnQm)∗ =


QnQm − λ1λ2Qn+1Qm+1 − λ1λ3Qn+2Qm+2 − λ2λ3Qn+3Qm+3

QnQm+1 +Qn+1Qm + λ3Qn+2Qm+3 − λ3Qn+3Qm+2

QnQm+2 +Qn+2Qm − λ2Qn+1Qm+3 + λ2Qn+3Tm+1

QnQm+3 +QnQm+3 + λ1Qn+1Qn+2 − λ1Qn+2Qm+1

 .

Thanks to the Şentürk and Ünal [49], we can obtain the following definition:

Definition 3.15. Let Qn be the nth Horadam 3PGQ. For all n ≥ 0, the
following mathematical equations are satisfied:

✴ The determinant of MQn
: det (MQn

) = N2
Qn

.
✴ The characteristic polynomial of MQn

:

PMQn
(t) =

(
t2 − 2tQn +Q2

n + λ1λ2Q
2
n+1 + λ1λ3Q

2
n+2 + λ2λ3Q

2
n+3

)2
.
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✴ The characteristic equation of MQn
:

det (MQn − tI4) = 0

⇔ PMQn
(t) =

(
t2 − 2tQn +Q2

n + λ1λ2Q
2
n+1 + λ1λ3Q

2
n+2 + λ2λ3Q

2
n+3

)2
= 0.

✴ The eigenvalues of MQn :

T1,2 = Qn +
√
−λ1λ2Q2

n+1 − λ1λ3Q2
n+2 − λ2λ3Q2

n+3,

T3,4 = Qn −
√
−λ1λ2Q2

n+1 − λ1λ3Q2
n+2 − λ2λ3Q2

n+3.

✴ Multiplication of the eigenvalues of MQn
:

T1,2T3,4 = Q2
n + λ1λ2Q

2
n+1 + λ1λ3Q

2
n+2 + λ2λ3Q

2
n+3 = NQn .

✴ The eigenvectors corresponding to the eigenvalue T1,2 of MQn
:

λ1Qn+2

√
−λ1λ2Q2

n+1−λ1λ3Q2
n+2−λ2λ3Q2

n+3−λ1λ2Qn+1Qn+3

λ1Q2
n+2+λ2Q2

n+3

Qn+3

√
−λ1λ2Q2

n+1−λ1λ3Q2
n+2−λ2λ3Q2

n+3+λ1Qn+1Qn+2

λ1Q2
n+2+λ2Q2

n+3

1

0


and

λ2Qn+3

√
−λ1λ2Q2

n+1−λ1λ3Q2
n+2−λ2λ3Q2

n+3+λ1λ2Qn+1Qn+2

λ1Q2
n+2+λ2Q2

n+3

−Qn+2

√
−λ1λ2Q2

n+1−λ1λ3Q2
n+2−λ2λ3Q2

n+3−λ2Qn+1Qn+3

λ1Q2
n+2+λ2Q2

n+3

0

1


.

✴ The eigenvectors corresponding to the eigenvalue T3,4 of MQn
:

λ1Qn+2

√
−λ1λ2Q2

n+1−λ1λ3Q2
n+2−λ2λ3Q2

n+3+λ1λ2Qn+1Qn+3

λ1Q2
n+2+λ2Q2

n+3

−Qn+3

√
−λ1λ2Q2

n+1−λ1λ3Q2
n+2−λ2λ3Q2

n+3−λ1Qn+1Qn+2

λ1Q2
n+2+λ2Q2

n+3

1

0


and

−λ2Qn+3

√
−λ1λ2Q2

n+1−λ1λ3Q2
n+2−λ2λ3Q2

n+3−λ1λ2Qn+1Qn+2

λ1Q2
n+2+λ2Q2

n+3

Qn+2

√
−λ1λ2Q2

n+1−λ1λ3Q2
n+2−λ2λ3Q2

n+3+λ2Qn+1Qn+3

λ1Q2
n+2+λ2Q2

n+3

0

1


.
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Example 3.16. Let J4 be the 4th Jacobsthal 3PGQ.

✴ According to equation (9), polar representation of J4 is as follows:

J4 =
√
25 + 121λ1λ2 + 441λ1λ3 + 1849λ2λ3

(
cos θ + Ĵ4 sin θ

)
.

✴ Moreover, Jacobsthal 3-parameter generalized unit vector is written as:

Ĵ4 =
(5, 21, 43)

√
121λ1λ2 + 441λ1λ3 + 1849λ2λ3

,

where 
cos θ =

5√
25 + 121λ1λ2 + 441λ1λ3 + 1849λ2λ3

,

sin θ =

√
121λ1λ2 + 441λ1λ3 + 1849λ2λ3

25 + 121λ1λ2 + 441λ1λ3 + 1849λ2λ3

.

✴ Also, the following matrix can be constructed as follows:

MJ4
=


5 −11λ1λ2 −21λ1λ3 −43λ2λ3

11 5 −43λ3 21λ3

21 43λ2 5 −11λ2

43 −21λ1 11λ1 5

 .

✴ The determinant of MJ4
is written as:

det (MJ4) = (25 + 121λ1λ2 + 441λ1λ3 + 1849λ2λ3)
2
= (NJ4)

2
.

✴ The characteristic polynomial of MJ4
is given:

PJ4
(t) =

(
t2 − 10t+ 25 + 121λ1λ2 + 441λ1λ3 + 1849λ2λ3

)2
.

✴ The eigenvalues of MJ4
are determined:

T1,2 = 5 +
√
−121λ1λ2 − 441λ1λ3 − 1849λ2λ3

and
T3,4 = 5−

√
−121λ1λ2 − 441λ1λ3 − 1849λ2λ3.

✴ The eigenvectors corresponding to T1,2 are expressed:(
−λ1(473λ2+21

√
−121λ1λ2−441λ1λ3−1849λ2λ3)
441λ1+1849λ2

−−231λ1+43
√

−121λ1λ2−441λ1λ3−1849λ2λ3
441λ1+1849λ2

1 0
)T

and(
λ2(231λ1+43

√
−121λ1λ2−441λ1λ3−1849λ2λ3)
441λ1+1849λ2

−−253λ2−21
√
−121λ1λ2−441λ1λ3−1849λ2λ3
441λ1+1849λ2

0 1
)T

.

✴ The eigenvectors corresponding to T3,4 are obtained:(
473λ1λ2+21λ1

√
−121λ1λ2−441λ1λ3−1849λ2λ3
441λ1+1849λ2

−−231λ2−43
√
−121λ1λ2−441λ1λ3−1849λ2λ3
441λ1+1849λ2

1 0
)T

and(
−−231λ1λ2+43λ2

√
−121λ1λ2−441λ1λ3−1849λ2λ3
441λ1+1849λ2

−−473λ2−21
√
−121λ1λ2−441λ1λ3−1849λ2λ3
441λ1+1849λ2

0 1
)T

.

✴ The multiplication of the eigenvalues of MJ4
is given:

T1,2T3,4 = 25 + 121λ1λ2 + 441λ1λ3 + 1849λ2λ3.
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4. Conclusion

In this study, we determine Horadam 3PGQ by taking the coefficients of
3PGQ as Horadam numbers and also examine some special cases of them.
Also, we obtain Binet formulas, generating function, exponential generating
function, Poisson generating function, sum formulas, Cassini identity, polar
representation, and matrix equation. Then, we get the determinant, character-
istic polynomial, characteristic equation, eigenvalues, and eigenvectors for the
matrix representation of Horadam 3PGQ.

In our future study, we plan to introduce the 3PGQ with generalized Tri-
bonacci number components, as the choice of the special recurrence sequence
type can be modified.
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[10] C. B. Çimen and A. İpek, On Pell quaternions and Pell-Lucas quaternions, Adv. Appl.

Clifford Algebras. 26 (2016), 39–51.

[11] J. Cockle, On systems of algebra involving more than one imaginary; and on equations
of the fifth degree, Philosophical Magazine 35 (1849), no. 238, 434–437.

[12] L. E. Dickson, On the theory of numbers and generalized quaternions, Amer. J. Math.
46 (1924), 1–16.

[13] C. Flaut and D. Savin, Quaternion algebras and generalized Fibonacci-Lucas quater-

nions, Adv. Appl. Clifford Algebras. 25 (2015), 853–862.

[14] L. W. Griffiths, Generalized quaternion algebras and the theory of numbers, Amer. J.
Math. 50 (1928), 303–314.
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[57] Ü. Tokeşer, Z. Ünal, and G. Bilgici, Split Pell and Pell-Lucas quaternions, Adv. Appl.
Clifford Algebras 27 (2017), no. 2, 1881–1893.

[58] T. Unger and N. Markin, Quadratic forms and space-time block codes from generalized

quaternion and biquaternion algebras, IEEE Trans. Inform. Theory 57 (2011), no. 9,
6148–6156.
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