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RICCI SOLITONS AND RICCI BI-CONFORMAL VECTOR

FIELDS ON THE MODEL SPACE Sol41

Mahin Sohrabpour∗ and Shahroud Azami

Abstract. In the present paper, we classify the Ricci solitons and the
Ricci bi-conformal vector fields on the model space Sol41. Also, we show

that which of them are gradient vector fields and Killing vector fields.

1. Introduction

Conformal vector fields have a fundamental role in geometry and physics.
In geometry, a conformal vector field is a vector field that preserves angles
between curves. Conformal vector fields also arise naturally in the study of
Einstein’s theory of general relativity, where they correspond to symmetries of
spacetime.

A conformal vector field is a smooth vector field X on a Riemannian mani-
fold (M, g) if a smooth function like f that named a potential function, exists
on M that satisfies LXg = fg, where LXg is the Lie derivative of g with respect
X. So if the potential function f = 0 , X is a Killing vector field. We say that
X is a gradient conformal vector field, if X is a gradient of a smooth function.
A conformal vector field explain completely in [6, 7]. If the following equations
hold for some smooth functions α and β and any vector fields Y, Z, then the
vector field X is called a Ricci bi-conformal vector field:

(1) (LXg)(Y,Z) = αg(Y,Z) + βS(Y,Z),

and

(2) (LXS)(Y,Z) = αS(Y,Z) + βg(Y,Z),

where S is the Ricci tensor of M . Note, that Garcia-Parrado and Senovilla
introduced bi-conformal vector fields [10], then De et al. defined Ricci bi-
conformal vector fields in [5]. In [1, 2, 3] have been studied Ricci bi-conformal
vector fields on Siklos spacetimes, homogeneous Gödel-type spacetimes, and
Lorentzian five-dimensional two-step nilpotent Lie groups, respectively.
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One of the most important and attractive topics in physics and geometry
is study of the Ricci solitons, that they were introduced by Hamilton [12], are
natural generalization of Einstein metrics. Its applications were investigated
in various fields of sciences such as physics [11], biology, chemistry [13], and
economics [14]. On a pseudo-Riemannian manifold (M, g), it is defined by

(3) LXg + S = λg,

where X is a smooth vector field on M , and λ is a real number [4]. See [19] for
further reading.

If the group of isometries of (M, g) acts transitivity on M , the connected
pseudo-Riemannian manifold (M, g) is named to be a homogeneous. A Thurston
geometry (G,X) is a homogeneous space where X is connected and simply
connected, suppose G be a group and it acts transitively on X with compact
point stabilizers such that G is not contained in any larger group of diffeomor-
phisms of X, and there is at least one compact manifold modeled on (G,X).
Thurston geometry is a subset of Riemannian homogeneous spaces, that studied
in dimension three for three-manifolds. So the possible Riemannian structures
of compact orientable three-manifolds are similar to the uniformization the-
orem for surfaces that are compact and orientable. We can decompose any
three-manifold into pieces and each of them admits a Riemannian metric lo-
cally isometric to one of eight three-dimensional model spaces, the Thurston
geometries R3,S3,H3,S2 × R,H2 × R, S̃L(2,R), Nil3 and Sol3. Eight three-
dimensional Thurston spaces explain completely in [15, 16]. The model space
(Sol41, g) is one of the four-dimensional Thurston geometries. Filipkiewicz in [9]
listed 19 types of Thurston geometries in dimension four. According to Wall
[17], the space (Sol41, g) belongs to 14 spaces among these model spaces that
admit complex structure compatible with the geometric structure, for more
information study [8].

The paper is organized as follows: In Section 2, we recall some necessary
concepts on (Sol41, g) which be used throughout this paper. In Section 3, we
calculate the Ricci solitons and we talk about a theorem of this equation on
this space and we discuss about the existence of Ricci solitons, also, in Section
4, we investigate the Ricci bi-conformal vector fields on (Sol41, g) spaces and we
prove which of them are gradient vector fields and Killing vector fields.

2. The model space Sol41

2.1. Lie Group

The primary manifold of the model space Sol41 is R4(x, y, z, t) with the group
operation

(x1, y1, z1, t1) ∗ (x2, y2, z2, t2) = (x1 + et1x2, y1 + e−t1y2, z1 + z2 + e−t1x1y2, t1 + t2).
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This operation is deduced from the matrix multiplications by the following
definition

(x, y, z, t) :=


1 0 e−tx z
0 et 0 x
0 0 e−t y
0 0 0 1

 .

The neutral element of (4) is (0, 0, 0, 0). The inverse element of (x, y, z, t) is
given by

(x, y, z, t)−1 = (−e−tx,−ety,−z + xy,−t).(4)

2.2. Metric and Basis

Using the inverse translation (5), by pullback of coordinate defferentials,
1 0 −x xy − z
0 e−t 0 −e−tx
0 0 et −ety
0 0 0 1




0 0 e−t(dx− xdt) dz
0 etdt 0 dx
0 0 −e−tdt dy
0 0 0 0



=


0 0 e−tdx dz − xdy
0 dt 0 e−tdx
0 0 −dt etdy
0 0 0 0

 .

(5)

The left invariant Riemannian metric g of Sol41 is obtained as follows

g = e−2tdx2 + e2tdy2 + (dz − xdy)2 + dt2,(6)

Therefore, the metrically dual left invariant basis vector fields are considered
as

e1 = et
∂

∂x
, e2 = e−t(

∂

∂y
+ x

∂

∂z
), e3 =

∂

∂z
, e4 =

∂

∂t
.(7)

So basis vector fields are satisfied the following brackets:

[e1, e3] = [e2, e3] = [e3, e4] = 0, [e1, e2] = e3, [e1, e4] = −e1,

[e2, e4] = e2.

The Levi-Civita connection of manifold (M, g) is shown by ∇. The curvature
tensor R of (M, g) can be defined as follows

R(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ]

and we define the Ricci tensor S by S(X,Y ) = tr(Z → R(X,Z)Y ). The
non-zero components of Levi-Civita connection are calculated by

∇eiej =


e4

1
2e3 − 1

2e2 −e1
− 1

2e3 −e4
1
2e1 e2

− 1
2e2

1
2e1 0 0

0 0 0 0

 ,
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and non-zero components of Ricci tensor is determined by

(8) S =


− 1

2 0 0 0
0 − 1

2 0 0
0 0 1

2 0
0 0 0 −2

 .

For any vector field X = Xkek by (LXg)(ei, ej) = g(∇eiX, ej)+g(ei,∇ejX)
the Lie derivative of the metric g with respect to the vector field X (see [18]),
is given by

(LXg)11 = −2X4 + 2e1X
1,

(LXg)12 = e1X
2 + e2X

1,

(LXg)13 = X2 + e1X
3 + e3X

1,

(LXg)14 = X1 + e1X
4 + e4X

1,

(LXg)22 = 2X4 + 2e2X
2,

(LXg)23 = −X1 + e2X
3 + e3X

2,

(LXg)24 = −X2 + e2X
4 + e4X

2,

(LXg)33 = 2e3X
3,(9)

(LXg)34 = e3X
4 + e4X

3,

(LXg)44 = 2e4X
4.

Further, using the formula (LXS)(ei, ej) = X(S(ei, ej)) − S(LXei, ej) −
S(ei,LXej) the Lie derivative of the Ricci tensor in direction X (see [18]), is
determined by

(LXS)11 = X4 − e1X
1,

(LXS)12 = −1

2
e2X

1 − 1

2
e1X

2,

(LXS)13 =
1

2
X2 +

1

2
e1X

3 − 1

2
e3X

1,

(LXS)14 = −2e1X
4 − 1

2
X1 − 1

2
e4X

1,

(LXS)22 = −e2X
2 −X4,

(LXS)23 =
1

2
e2X

3 − 1

2
X1 − 1

2
e3X

2,

(LXS)24 = −2e2X
4 +

1

2
X2 − 1

2
e4X

2,

(LXS)33 = e3X
3,(10)

(LXS)34 = −2e3X
4 +

1

2
e4X

3,

(LXS)44 = −4e4X
4.
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3. Ricci solitons on the model space Sol41

In this section, we solve the equation (3) on the model space Sol41. Substi-
tuting (8) and (9) into (3), the following equations are obtained

2e1X
1 − 2X4 − 1

2
= λ,(11)

2X4 + 2e2X
2 − 1

2
= λ,(12)

2e3X
3 +

1

2
= λ,(13)

2e4X
4 − 2 = λ,(14)

e2X
1 + e1X

2 = 0,(15)

X2 + e3X
1 + e1X

3 = 0,(16)

X1 + e4X
1 + e1X

4 = 0,(17)

−X1 + e3X
2 + e2X

3 = 0,(18)

−X2 + e4X
2 + e2X

4 = 0,(19)

e4X
3 + e3X

4 = 0.(20)

By taking integral of the equation (14) yields

X4 =
λ+ 2

2
t+ F (x, y, z),(21)

for some smooth function F . The following equation is deduced by integrating
of the equation (11)

X1 = (
2λ+ 1

4
)e−tx+ (

λ+ 2

2
)e−txt+ e−t

∫
F (x, y, z)dx+G(y, z, t),(22)

for some smooth function G. Next, by taking integration of equation (15),
arrived at

X2 = −e−2t(∂yG(y, z, t)x+
x2

2
∂zG(y, z, t))(23)

−e−3t

∫ ∫
∂yF (x, y, z)dxdx− e−3t

∫
(x

∫
∂zF (x, y, z)dx)dx+K(y, z, t),

for some smooth function K. Integrating of the equation (13), X3 is deduced
as

X3 = (
2λ− 1

4
)z + L(x, y, t),(24)

for some smooth function L. Substituting (7), (24), and (21) into (20), we
obtain the following relation

∂tL(x, y, t) = −∂zF (x, y, z),(25)
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by derivation of the equation (25) with respect to t, we get

∂ttL(x, y, t) = 0,(26)

also by derivation of the equation (25) with respect to z, we have

∂zzF (x, y, z) = 0,(27)

then by taking integration of (26) and (27), the following relations are obtained

L(x, y, t) = A(x, y)t+B(x, y),

F (x, y, z) = C(x, y)z +D(x, y),(28)

for some smooth functions A,B,C,D. From equation (25), we get C(x, y) =
−A(x, y), so (28) can be rewritten as follow

F (x, y, z) = −A(x, y)z +D(x, y).

Consequently, by substituting (7), (21), and (22) in (17), we have

G(y, z, t) + ∂tG(y, z, t) + et∂xF (x, y, z) +
λ+ 2

2
e−tx = 0,(29)

by derivation of the equation (29) with respect to x, then derivation it with
respect to t, λ = −2 is received. So (29) is considered as follows

G(y, z, t) + ∂tG(y, z, t) + et∂xF (x, y, z) = 0.(30)

Derivating the equations (30) with respect to x, we obtain

∂xxF (x, y, z) = 0,(31)

therefore from (28) and (31), the following relations are deduced

C(x, y) = A1(y)x+A2(y),

D(x, y) = D1(y)x+D2(y),

for some smooth functions A1, A2, D1, and D2. Also, from (30), G(y, z, t) can
be calculated as follows

G(y, z, t) = −et

2
(−A1(y)z +D1(y)) + e−tϕ(y, z),

for some smooth function ϕ. By substituting X1, X2, and X3 in (16) and by
differentiating with respect to x, the following relation is concluded

B(x, y) = B1(y)x+B2(y),
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for some smooth functions B1 and B2. This implies that equation (16) is a
polynomial with respect to x. Thus, the following equations are obtained

A1(y) = 0,

K(y, z, t) + e−t∂zϕ(y, z) + etB1(y) = 0,(32)

−e−tA2(y) +
e−t

2
D

′

1(y)− e−3t∂yϕ(y, z) = 0,(33)

D
′

1(y) + 2A2(y) = 0,(34)

A
′

2(y) +D
′

2(y) + ∂zϕ(y, z) = 0.(35)

From (33), we have

1

2
D

′

1(y)−A2(y) = 0,(36)

∂yϕ(y, z) = 0,(37)

and (37) yield

ϕ(y, z) = A3(z),(38)

for some smooth function A3. Thus, (34) and (36) yield

D
′

1(y) = 0,

and by integrating it, we have

D1(y) = b2,

for some smooth constant b2. Also, from (32) and (34), we get

A2(y) = 0.(39)

The equations (35) and (39) yield

D
′

2(y) + ∂zϕ(y, z) = 0.(40)

Now, from (38) and (40), we have

A3(z) = b1z + b6,

for some smooth constants b1 and b6. Therefore, we have

D2(y) = −b1y + b3,

for some smooth constant b3. The equation (18) yields

b1 = b2 = 0,

B1(y) =
1

2
y − b3y + b4,

B2(y) = b6y + b5,
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for some smooth constants b4 and b5. Using (21) and (23), we conclude that
the equation (19) is valid. Therefore, from all of these obtained parameters,
X1, X2, X3, X4 are listed as follows

X1 = −3

4
e−tx− e−t(b3x− b6),

X2 = −et(
1

2
y − b3y + b4),

X3 = −5

4
z + (

1

2
y − b3y + b4)x+ b5,

X4 = b3.

But X2 and X4 not satisfied in (12). Therefore, we have the following theorem:

Theorem 3.1. There is no Ricci soliton on (Sol41, g).

4. Ricci bi-conformal vector fields on the model space Sol41

In this section, we solve the equation (1) and (2) on the model space Sol41.
Substituting (6), (8), and (9) into (1), the following system is obtained

2e1X
1 − 2X4 = α− 1

2
β,(41)

e1X
2 + e2X

1 = 0,(42)

X2 + e1X
3 + e3X

1 = 0,(43)

X1 + e1X
4 + e4X

1 = 0,(44)

2X4 + 2e2X
2 = α− 1

2
β,(45)

−X1 + e2X
3 + e3X

2 = 0,(46)

−X2 + e2X
4 + e4X

2 = 0,(47)

2e3X
3 = α+

1

2
β,(48)

e3X
4 + e4X

3 = 0,(49)

2e4X
4 = α− 2β.(50)
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Also, substituting (6), (8), and (10) into (2), the following system is obtained

X4 − e1X
1 = −α

2
+ β,(51)

−1

2
e1X

2 − 1

2
e2X

1 = 0,(52)

1

2
X2 +

1

2
e1X

3 − 1

2
e3X

1 = 0,(53)

−2e1X
4 − 1

2
X1 − 1

2
e4X

1 = 0,(54)

−e2X
2 −X4 = −α

2
+ β,(55)

−1

2
X1 − 1

2
e3X

2 +
1

2
e2X

3 = 0,(56)

1

2
X2 − 2e2X

4 − 1

2
e4X

2 = 0,(57)

e3X
3 =

α

2
+ β,(58)

−2e3X
4 +

1

2
e4X

3 = 0,(59)

−4e4X
4 = −2α+ β.(60)

In following, we solve the above equations. From (41) and (51), we have

β = 0,

−X4 + e1X
1 =

α

2
,(61)

from equations (42) and (52), we get

e1X
2 + e2X

1 = 0,(62)

and the equations (43) and (53) yields

e3X
1 = 0,(63)

X2 + e1X
3 = 0,(64)

also, using equations (44) and (54), we deduce

e1X
4 = 0,(65)

X1 + e4X
1 = 0.(66)

Now, (45) and (55) yields

X4 + e2X
2 =

α

2
.(67)

From equations (46) and (56), we have

e3X
2 = 0,

−X1 + e2X
3 = 0.(68)
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Then we use the equations (47) and (57), so we have

e2X
4 = 0,(69)

−X2 + e4X
2 = 0.

From equations (48) and (58), we get

e3X
3 =

α

2
,(70)

also, the equations (49) and (59) yields

e4X
3 = 0,(71)

e3X
4 = 0.(72)

Using equations (50) and (60), we get

e4X
4 =

α

2
.(73)

From (65), (69), (71), and (72), we have

X4 = F (t),(74)

for some smooth function F . Therefore, from the equation (73), we obtain

α = 2F ′(t).(75)

Substituting (74) and (75) into (61), we obtain

∂xX
1 = e−t(F (t) + F ′(t)).(76)

Integrating of the equation (76), X1 is deduced as

X1 = e−t(F (t) + F ′(t))x+G(y, z, t),(77)

for some smooth function G. By substituting (77) into (66), we get

F ′(t) + F ′′(t) = 0,

G(y, z, t) + ∂tG(y, z, t) = 0.(78)

The equations (70) and (71) yields

F ′(t) = 0,

thus

F (t) = a1,(79)

for some constant a1. Therefore the equations (75) and (79) yields

α = 0.

Integrating of the equations (70) and (71), X3 is obtained as

X3 = K(x, y),(80)

for some smooth function K. From the equation (78)

G(y, z, t) = L(y, z)e−t,(81)
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for some smooth function L. Now, we can rewrite X1 as

X1 = e−ta1x+ L(y, z)e−t.(82)

By substituting (82) into (63)

L(y, z) = L1(y),

for some smooth function L1, and (82) becomes

X1 = e−t(a1x+ L1(y)).(83)

From the equation (64), X2 is deduced as

X2 = −et∂xK(x, y).(84)

By substituting (83) and (84) into (62)

K(x, y) = A(y)x+B(y),

L1(y) = a2,

for some smooth functions A(y) and B(y), and for some constant a2. Now,
from (67), we have

A(y) = a1y + a3,

for some constant a3. Thus, X
2 is obtained as

X2 = −et(a1y + a3).

By substituting (80) and (83) into (68), we get

B(y) = a2y + a4,

for some constant a4. Subsequently, X
1, X2, X3, X4, α and β becomes

X1 = e−t(a1x+ a2),

X2 = −et(a1y + a3),

X3 = (a1y + a3)x+ (a2y + a4),

X4 = a1,

α = β = 0.

Therefore, we have the following theorem.

Theorem 4.1. The vector field X on (Sol41, g) where g given by (6), is a
Ricci bi-conformal vector field if and only if

X = (a1x+a2)
∂

∂x
−(a1y+a3)(

∂

∂y
+x

∂

∂z
)+((a1y+a3)x+(a2y+a4))

∂

∂z
+a1

∂

∂t
.

Now, consider X = ∇f on (M, g) with potential function f . Therefore,

∇f = e1fe1 + e2fe2 + e3fe3 + e4fe4.
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Thus, the Ricci bi-conformal vector field X on (M, g) is gradient vector field
as ∇f if and only if

∂xf = e−2t(a1x+ a2),

∂yf = (−e2t − x2)(a1y + a3) + (a2y + a4)x,

∂zf = (a1y + a3)x+ (a2y + a4),(85)

∂tf = a1.

The derivation of the fourth equation of (85) with respect to x implies that
∂x∂tf = 0. So by deriving the first equation with respect to t gives that
∂t∂xf = −2e−2t(a1x + a2), thus, a1 = a2 = 0. Now, the third equation
becomes ∂zf = a3x + a4. By deriving the first and the third equations of
(85) with respect to z and x, respectively, yield that ∂z∂xf = 0 and ∂x∂zf =
a3x + a4, therefore a1 = a3 = 0. The derivation of the first equation of (85)
with respect to y concludes that ∂y∂xf = 0 and the derivation of the second
equation with respect to x gives that ∂x∂yf = −2x(a1y+a3)+(a2y+a4), thus
a1 = a2 = a3 = a4 = 0. Thus (85) becomes

∂xf = ∂yf = ∂zf = ∂tf = 0.

The direct integration leads to the following

f(x, y, z, t) = c.

for some constant c. At the end we can state:

Corollary 4.2. Any Ricci bi-conformal vector field X on (Sol41, g) is gradi-
ent vector field with potential function f if f(x, y, z, t) = c, for some constant
c.

Corollary 4.3. Any Ricci bi-conformal vector field X on (Sol41, g) is Killing
vector field.
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