참고문헌
- Abouelmagd, G. (2004), "Hot deformation and wear resistance of P/M aluminium metal matrix composites", J. Mater. Process. Technol., 155-156, 1395-1401. https://doi.org/10.1016/j.jmatprotect.2004.04.223.
- Ait Yahia, S., Amar, L.H.H., Belabed Z. and Tounsi, A. (2018), "Effect of homogenization models on stress analysis of functionally graded plates", Struct. Eng. Mech., 67(5), 527-544. https://doi.org/10.12989/sem.2018.67.5.527.
- Ali, R.V. (2015), "A developed hybrid method for crack identification of beams", Smart Struct. Syst., 16(3), 401-414. https://doi.org/10.12989/sss.2015.16.3.401.
- Andreaus, U. and Baragatti, P. (2012), "Experimental damage detection of cracked beams by using nonlinear characteristics of forced response", Mech. Syst. Signal Proc., 31, 382-404. https://doi.org/10.1016/j.ymssp.2012.04.007.
- Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6(2), 147-157. https://doi.org/10.1016/0167-6636(87)90005-6.
- Bovsunovskii, A.P., Surace, C. and Bovsunovskii, O.A. (2006), "The effect of damping and force application point on the nonlinear dynamic behavior of a cracked beam at sub- and super-resonance vibrations", Strength Mater., 38(5), 492-497. https://doi.org/10.1007/s11223-006-0068-8.
- Byeongil, K., Gregory, N.W. and Hwan-Sik, Y. (2013), "Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control", Smart Struct. Syst., 11(6), 623-635. https://doi.org/10.12989/sss.2013.11.6.623.
- Cacciola, P. and Muscolino, G. (2002), "Dynamic response of a rectangular beam with a known non-propagating crack of certain or uncertain depth", Comput. Struct., 80(27-28), 2387-2396. https://doi.org/10.1016/S0045-7949(02)00255-9.
- Chang, C.C. and Chen, L.W. (2005), "Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach", Mech. Syst. Signal Proc., 19(1), 139-155. https://doi.org/10.1016/j.ymssp.2003.11.001.
- Chondros, T., Dimarogonas, A. and Yao, J. (1998), "A continuous cracked beam vibration theory", J. Sound. Vib., 215(1), 17-34. https://doi.org/10.1006/jsvi.1998.1640.
- Ding, H.Z., Biermann, H. and Hartmann, O. (2003), "Low cycle fatigue crack growth and life prediction of short-fibre reinforced aluminum matrix composites". Int. J. Fatigue, 25(3), 209-220. https://doi.org/10.1016/S0142-1123(02)00114-7.
- Duan, F. Liu, J. Wang, G. and Yu, Z. (2018), "Dynamic behaviour of aluminium alloy plates with surface cracks subjected to repeated impacts", Ships Offshore Struc., 14(5), 478-491. https://doi.org/10.1080/17445302.2018.1507088.
- Ebrahimi, A., Heydari, M. and Behzad, M. (2014), "A continuous vibration theory for rotors with an open edge crack. J. Sound. Vib., 333(15), 3522-3535. https://doi.org/10.1016/j.jsv.2014.03.012.
- Gudmundson, P. (1982), "Eigenfrequency changes of structures due to cracks, notches or other geometrical changes", J. Mech. Phys. Solids, 30(5), 339-353. https://doi.org/10.1016/00225096(82)90004-7.
- Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/SCS.2021.39.1.051.
- Han, N.M., Zhang, XM., Liu, SD., Ke, B. and Xin, X. (2011), "Effects of pre-stretching and aging on the strength and fracture toughness of aluminium alloy 7050", Mat. Sci. Eng. A-Struct., 528(10-11), 3714-3721. https://doi.org/10.1016/j.msea.2011.01.068.
- Hu, H.T.; Li, Y.L. Suo, T. and Zhao, F. (2013a), "Vibration fatigue and fracture performance of aluminum alloy 2024", J. Aeronaut. Mater., 33(4), 78-83. https://doi.org/10.3969/j.issn.1005-5053.2013.4.014.
- Hui-Hui, F., Kyung-Seop, H. and Jung-II, S. (2004), "Wear properties of Saffil/Al, Saffil/Al2O3/Al and Saffil/SiC/Al hybrid metal matrix composites, Wear, 256(7-8) 705-713. https://doi.org/10.1016/S0043-1648(03)00460-5.
- Inegbenebor, A.O., Bolu, C.A., Babalola, P.O., Inegbenebor, A.I. and Fayomi, O.S.I. (2016), "Influence of the grit size of silicon carbide particles on the mechanical and electrical properties of stir casting aluminum matrix composite material", Silicon, 8, 573-578. https://doi.org/10.1007/s1263.
- Ismail M.M., Tounsi, A. Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Structures, 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
- Jassim, Z.A., Ali, N.N., Mustapha, F. and Abdul Jalil, N.A. (2013), "A review on the vibration analysis for a damage occurrence of a cantilever beam", Eng. Fail. Anal., 31, 442-461. https://doi.org/10.1016/j.engfailanal.2013.02.016.
- Kim, J. and Stubbs, N. (2003), "Crack detection in beam-type structures using frequency data", J. Sound. Vib., 259(1), 145-160. https://doi.org/10.1006/jsvi.2002.5132.
- Kok, M. (2005), "Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites", J. Mater. Process. Technol., 161(3), 381-387. https://doi.org/10.1016/j.jmatprotec.2004.07.068.
- Lasagani, F. and Degischer, H.P. (2009), "Enhanced Young's Modulus of Al-Si Alloys and Reinforced Matrices by Cocontinuous Structures", J. Compos. Mater., 24(6) 739-755. https://doi.org/10.1177/0021998309347649.
- Lee, Y.S. and Chung, M.J. (2000), "A study on crack detection using eigenfrequency test data", Comput. Struct., 77(3), 327-342. https://doi.org/10.1016/S0045-7949(99)00194-7.
- Liu, J. Zhu, W.D. Charalambides, P.G., Shao, Y.M. Xu, Y.F. and Fang, X.M. (2016), "A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips", J. Sound. Vib., 382, 274-290. https://doi.org/10.1016/j.jsv.2016.04.036.
- Matveev, V.V., Boginich, O.E. and Yakovlev, A.P. (2010), "Approximate analytical method for determining the vibration-diagnostic parameter indicating the presence of a crack in a distributed-parameter elastic system at super- and subharmonic resonances", Strength Mater., 42(5), 528-543. https://doi.org/10.1007/s11223-010-9243-z.
- Meksi, A., Benyoucef, S., Houari, M.A. and Tounsi, A. (2015), "A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations", Struct. Eng. Mech., 53(6), 1215-1240. https://doi.org/10.12989/sem.2015.53.6.1215.
- Mohammad, D., Ali, F. and Moslem, M. (2012), "Axial vibration of a tapered nanorod based on non-local elasticity theory and differential quadrature method", Mech. Res. Commun., 39(1), 23-27. https://doi.org/10.1016/j.mechrescom.2011.09.004.
- Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21, 571-574. https://doi.org/10.1016/00016160(73)90064-3.
- Owolabi, G.M., Swamidas, A.S.J. and Seshadri, R. (2003), "Crack detection in beams using changes in frequencies and amplitudes of frequency response functions", J. Sound. Vib., 265(1), 1-22. https://doi.org/10.1016/S0022-460X(02)01264-6.
- Patel, K.M., Pandey, P.M. and Paruchuri, V.R. (2011), "Study on machinability of Al2O3 ceramic composite in EDM using response surface methodology", J. Eng Mater. T., 133(2). https://doi.org/10.1115/1.4003100.
- Pedersen, K.O., Borvik, T. and Hopperstad, O.S. (2011), "Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions", Mater. Design, 32(1), 97-107. http://dx.doi.org/10.1016/j.matdes.2010.06.029.
- Pradhan, K.K. and Chakraverty, S. (2014), "Effects of different shear deformation theories on free vibration of functionally graded beams", Int. J. Mech. Sci., 82, 149-160. http://dx.doi.org/10.1016/j.ijmecsci.2014.03.014.
- Rahbar-Ranji, A. and Zarookian, A. (2015), "Ultimate strength of stiffened plates with a transverse crack under uniaxial compression", Ships Offshore Struc., 10(4), 416-25. https://doi.org/10.1080/17445302.2014.942078.
- Rahimian, M., Parvin, N. and Ehsani, N. (2011), "The effect of production parameters on microstructure and wear resistance of powder metallurgy Al- Al2O3 composite", Mater. Des., 32(2), 1031-1038. https://doi.org/10.1016/j.matdes.2010.07.016.
- Sadettin, O. (2007), "Analysis of free and forced vibration of a cracked cantilever beam", NDT E Int., 40(6), 443-450. https://doi.org/10.1016/j.ndteint.2007.01.010.
- Seifi, R. and Khoda-yari, N. (2011), "Experimental and numerical studies on buckling of cracked thin-plates under full and partial compression edge loading", Thin Wall Struct., 49(12), 1504-1516. https://doi.org/10.1016/j.tws.2011.07.010.
- Shapour, M. and Peyman, J.M. (2015), "Crack identification in post-buckled beam-type structures", Smart Struct. Syst., 15(5), 1233-1252. https://doi.org/10.12989/sss.2015.15.5.1233.
- Shifrin, E.I. and Rutolo, R. (1999), "Natural frequencies of a beam with an arbitrary number of cracks", J. Sound. Vib., 222(3), 409-423. https://doi.org/10.1006/jsvi.1998.2083.
- Suthar, J. and Patel, K.M. (2018), "Processing issues, machining, and applications of aluminum metal matrix composites", Mater. Manuf. Process, 33, 499-527. https://doi.org/10.1080/10426914.2017.1401713.
- Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S. U. and Al-Zahrani, M.M. (2021), "An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation", Waves Random Complex Media, 34(3),1616-1639. https://doi.org/10.1080/17455030.2021.1942310
- Tatar, C. and Ozdemir, N. (2010), "Investigation of thermal conductivity and microstructure of the α-Al2O3 particulate reinforced aluminum composites (Al/ Al2O3-MMC) by powder metallurgy method", Physica B Condens. Matter, 405(3), 896-899. https://doi.org/10.1016/j.physb.2009.10.010.
- Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
- Vijaya Ramnath, B., Elanchezhian, C., Jaivignesh, M., Rajesh, S., Parswajinan, C. and Siddique Ahmed Ghias, A. (2014), "Evaluation of mechanical properties of aluminium alloy-alumina-boron carbide metal matrix composites", Mater. Des., 58, 332-338. https://doi.org/10.1016/j.matdes.2014.01.068.
- Wang, Z. Bing, L. and Han, Y. (2012), "Free vibration frequency variation analysis of a cracked aluminum alloy beam under high temperatures", J. Harbin Eng. Univ., 33(3), 320-324. https://doi.org/10.3969/j.issn.1006-7043.201103012.
- Widad, I.M., Al-samarraie, S.H. and Alsaior, M.M. (2013), "Vibration control analysis of a smart flexibale cantilever beam using smart material", J. Eng., 19(1), 83-95.
- Xiang, J., Matsumoto, T., Long, J. Wang, Y. and Jiang, Z. (2012), "A simple method to detect cracks in beam-like structures", Smart Struct. Syst., 9(4), 335-353. https://doi.org/10.12989/sss.2012.9.4.335.
- Xing, M.Z., Wang, Y.G. and Jiang, Z.X. (2013), "Dynamic Fracture Behaviors of Selected Aluminum Alloys Under Three-point Bending", Defence Technol., 9(4), 193-200. https://doi.org/10.1016/j.dt.2013.11.002.
- Yang, D.L., Yiu, Y.L., Li, S.B., Tao, J., Liu, C. and Liu, J.H. (2017), "Fatigue crack growth prediction of 7075 aluminum alloy based on the GMSVR model optimized by the artificial bee colony algorithm", Eng. Computation, 34(1), 1-14. https://doi.org/10.1016/j.prostr.2016.06.384.
- Yayli, M.O. (2014), "Free vibration behavior of a gradient elastic beam with varying cross section", Shock Vib., 801696. http://dx.doi.org/10.1155/2014/801696.
- Yee, Y.L. and Chee, K.S. (2013), "Damage detection and characterization using EMI technique under varying axial load", Smart Struct. Syst., 11(4), 349-364. https://doi.org/10.12989/sss.2013.11.4.349.
- Zheng, T. and Ji, T. (2012), "An approximate method for determining the static deflection and natural frequency of a cracked beam", J. Sound. Vib., 331(11), 2654-2670. https://doi.org/10.1016/j.jsv.2012.01.021.