DOI QR코드

DOI QR Code

Vibration behavior of cracked ceramic reinforced aluminum composite fixed beams

  • Abdellatif Selmi (Prince Sattam Bin Abdulaziz University, College of Engineering, Department of Civil Engineering)
  • Received : 2021.09.21
  • Accepted : 2024.09.02
  • Published : 2024.09.10

Abstract

The present paper deals with the dynamic analysis of cracked ceramic-reinforced aluminum composite fixed beams by using a method based on changes in modal strain energy. Mechanical characteristics of composite materials of the beams are predicted through Mori-Tanaka micromechanical scheme. A Comparative study and numerical simulations involve various parameters; ceramic volume fraction, reinforcement aspect ratio, ratio of the reinforcement Young's modulus to the matrix Young's modulus and ratio of the reinforcement density to the matrix density are taken into investigation. The obtained results prove the important effects of these parameters on intact and cracked ceramic aluminum beams.

Keywords

References

  1. Abouelmagd, G. (2004), "Hot deformation and wear resistance of P/M aluminium metal matrix composites", J. Mater. Process. Technol., 155-156, 1395-1401. https://doi.org/10.1016/j.jmatprotect.2004.04.223.
  2. Ait Yahia, S., Amar, L.H.H., Belabed Z. and Tounsi, A. (2018), "Effect of homogenization models on stress analysis of functionally graded plates", Struct. Eng. Mech., 67(5), 527-544. https://doi.org/10.12989/sem.2018.67.5.527.
  3. Ali, R.V. (2015), "A developed hybrid method for crack identification of beams", Smart Struct. Syst., 16(3), 401-414. https://doi.org/10.12989/sss.2015.16.3.401.
  4. Andreaus, U. and Baragatti, P. (2012), "Experimental damage detection of cracked beams by using nonlinear characteristics of forced response", Mech. Syst. Signal Proc., 31, 382-404. https://doi.org/10.1016/j.ymssp.2012.04.007.
  5. Benveniste, Y. (1987), "A new approach to the application of Mori-Tanaka's theory in composite materials", Mech. Mater., 6(2), 147-157. https://doi.org/10.1016/0167-6636(87)90005-6.
  6. Bovsunovskii, A.P., Surace, C. and Bovsunovskii, O.A. (2006), "The effect of damping and force application point on the nonlinear dynamic behavior of a cracked beam at sub- and super-resonance vibrations", Strength Mater., 38(5), 492-497. https://doi.org/10.1007/s11223-006-0068-8.
  7. Byeongil, K., Gregory, N.W. and Hwan-Sik, Y. (2013), "Active vibration suppression of a 1D piezoelectric bimorph structure using model predictive sliding mode control", Smart Struct. Syst., 11(6), 623-635. https://doi.org/10.12989/sss.2013.11.6.623.
  8. Cacciola, P. and Muscolino, G. (2002), "Dynamic response of a rectangular beam with a known non-propagating crack of certain or uncertain depth", Comput. Struct., 80(27-28), 2387-2396. https://doi.org/10.1016/S0045-7949(02)00255-9.
  9. Chang, C.C. and Chen, L.W. (2005), "Detection of the location and size of cracks in the multiple cracked beam by spatial wavelet based approach", Mech. Syst. Signal Proc., 19(1), 139-155. https://doi.org/10.1016/j.ymssp.2003.11.001.
  10. Chondros, T., Dimarogonas, A. and Yao, J. (1998), "A continuous cracked beam vibration theory", J. Sound. Vib., 215(1), 17-34. https://doi.org/10.1006/jsvi.1998.1640.
  11. Ding, H.Z., Biermann, H. and Hartmann, O. (2003), "Low cycle fatigue crack growth and life prediction of short-fibre reinforced aluminum matrix composites". Int. J. Fatigue, 25(3), 209-220. https://doi.org/10.1016/S0142-1123(02)00114-7.
  12. Duan, F. Liu, J. Wang, G. and Yu, Z. (2018), "Dynamic behaviour of aluminium alloy plates with surface cracks subjected to repeated impacts", Ships Offshore Struc., 14(5), 478-491. https://doi.org/10.1080/17445302.2018.1507088.
  13. Ebrahimi, A., Heydari, M. and Behzad, M. (2014), "A continuous vibration theory for rotors with an open edge crack. J. Sound. Vib., 333(15), 3522-3535. https://doi.org/10.1016/j.jsv.2014.03.012.
  14. Gudmundson, P. (1982), "Eigenfrequency changes of structures due to cracks, notches or other geometrical changes", J. Mech. Phys. Solids, 30(5), 339-353. https://doi.org/10.1016/00225096(82)90004-7.
  15. Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K.H. and Mahmoud, S.R. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/SCS.2021.39.1.051.
  16. Han, N.M., Zhang, XM., Liu, SD., Ke, B. and Xin, X. (2011), "Effects of pre-stretching and aging on the strength and fracture toughness of aluminium alloy 7050", Mat. Sci. Eng. A-Struct., 528(10-11), 3714-3721. https://doi.org/10.1016/j.msea.2011.01.068.
  17. Hu, H.T.; Li, Y.L. Suo, T. and Zhao, F. (2013a), "Vibration fatigue and fracture performance of aluminum alloy 2024", J. Aeronaut. Mater., 33(4), 78-83. https://doi.org/10.3969/j.issn.1005-5053.2013.4.014.
  18. Hui-Hui, F., Kyung-Seop, H. and Jung-II, S. (2004), "Wear properties of Saffil/Al, Saffil/Al2O3/Al and Saffil/SiC/Al hybrid metal matrix composites, Wear, 256(7-8) 705-713. https://doi.org/10.1016/S0043-1648(03)00460-5.
  19. Inegbenebor, A.O., Bolu, C.A., Babalola, P.O., Inegbenebor, A.I. and Fayomi, O.S.I. (2016), "Influence of the grit size of silicon carbide particles on the mechanical and electrical properties of stir casting aluminum matrix composite material", Silicon, 8, 573-578. https://doi.org/10.1007/s1263.
  20. Ismail M.M., Tounsi, A. Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Structures, 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
  21. Jassim, Z.A., Ali, N.N., Mustapha, F. and Abdul Jalil, N.A. (2013), "A review on the vibration analysis for a damage occurrence of a cantilever beam", Eng. Fail. Anal., 31, 442-461. https://doi.org/10.1016/j.engfailanal.2013.02.016.
  22. Kim, J. and Stubbs, N. (2003), "Crack detection in beam-type structures using frequency data", J. Sound. Vib., 259(1), 145-160. https://doi.org/10.1006/jsvi.2002.5132.
  23. Kok, M. (2005), "Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites", J. Mater. Process. Technol., 161(3), 381-387. https://doi.org/10.1016/j.jmatprotec.2004.07.068.
  24. Lasagani, F. and Degischer, H.P. (2009), "Enhanced Young's Modulus of Al-Si Alloys and Reinforced Matrices by Cocontinuous Structures", J. Compos. Mater., 24(6) 739-755. https://doi.org/10.1177/0021998309347649.
  25. Lee, Y.S. and Chung, M.J. (2000), "A study on crack detection using eigenfrequency test data", Comput. Struct., 77(3), 327-342. https://doi.org/10.1016/S0045-7949(99)00194-7.
  26. Liu, J. Zhu, W.D. Charalambides, P.G., Shao, Y.M. Xu, Y.F. and Fang, X.M. (2016), "A dynamic model of a cantilever beam with a closed, embedded horizontal crack including local flexibilities at crack tips", J. Sound. Vib., 382, 274-290. https://doi.org/10.1016/j.jsv.2016.04.036.
  27. Matveev, V.V., Boginich, O.E. and Yakovlev, A.P. (2010), "Approximate analytical method for determining the vibration-diagnostic parameter indicating the presence of a crack in a distributed-parameter elastic system at super- and subharmonic resonances", Strength Mater., 42(5), 528-543. https://doi.org/10.1007/s11223-010-9243-z.
  28. Meksi, A., Benyoucef, S., Houari, M.A. and Tounsi, A. (2015), "A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations", Struct. Eng. Mech., 53(6), 1215-1240. https://doi.org/10.12989/sem.2015.53.6.1215.
  29. Mohammad, D., Ali, F. and Moslem, M. (2012), "Axial vibration of a tapered nanorod based on non-local elasticity theory and differential quadrature method", Mech. Res. Commun., 39(1), 23-27. https://doi.org/10.1016/j.mechrescom.2011.09.004.
  30. Mori, T. and Tanaka, K. (1973), "Average stress in matrix and average elastic energy of materials with misfitting inclusions", Acta Metall., 21, 571-574. https://doi.org/10.1016/00016160(73)90064-3.
  31. Owolabi, G.M., Swamidas, A.S.J. and Seshadri, R. (2003), "Crack detection in beams using changes in frequencies and amplitudes of frequency response functions", J. Sound. Vib., 265(1), 1-22. https://doi.org/10.1016/S0022-460X(02)01264-6.
  32. Patel, K.M., Pandey, P.M. and Paruchuri, V.R. (2011), "Study on machinability of Al2O3 ceramic composite in EDM using response surface methodology", J. Eng Mater. T., 133(2). https://doi.org/10.1115/1.4003100.
  33. Pedersen, K.O., Borvik, T. and Hopperstad, O.S. (2011), "Fracture mechanisms of aluminium alloy AA7075-T651 under various loading conditions", Mater. Design, 32(1), 97-107. http://dx.doi.org/10.1016/j.matdes.2010.06.029.
  34. Pradhan, K.K. and Chakraverty, S. (2014), "Effects of different shear deformation theories on free vibration of functionally graded beams", Int. J. Mech. Sci., 82, 149-160. http://dx.doi.org/10.1016/j.ijmecsci.2014.03.014.
  35. Rahbar-Ranji, A. and Zarookian, A. (2015), "Ultimate strength of stiffened plates with a transverse crack under uniaxial compression", Ships Offshore Struc., 10(4), 416-25. https://doi.org/10.1080/17445302.2014.942078.
  36. Rahimian, M., Parvin, N. and Ehsani, N. (2011), "The effect of production parameters on microstructure and wear resistance of powder metallurgy Al- Al2O3 composite", Mater. Des., 32(2), 1031-1038. https://doi.org/10.1016/j.matdes.2010.07.016.
  37. Sadettin, O. (2007), "Analysis of free and forced vibration of a cracked cantilever beam", NDT E Int., 40(6), 443-450. https://doi.org/10.1016/j.ndteint.2007.01.010.
  38. Seifi, R. and Khoda-yari, N. (2011), "Experimental and numerical studies on buckling of cracked thin-plates under full and partial compression edge loading", Thin Wall Struct., 49(12), 1504-1516. https://doi.org/10.1016/j.tws.2011.07.010.
  39. Shapour, M. and Peyman, J.M. (2015), "Crack identification in post-buckled beam-type structures", Smart Struct. Syst., 15(5), 1233-1252. https://doi.org/10.12989/sss.2015.15.5.1233.
  40. Shifrin, E.I. and Rutolo, R. (1999), "Natural frequencies of a beam with an arbitrary number of cracks", J. Sound. Vib., 222(3), 409-423. https://doi.org/10.1006/jsvi.1998.2083.
  41. Suthar, J. and Patel, K.M. (2018), "Processing issues, machining, and applications of aluminum metal matrix composites", Mater. Manuf. Process, 33, 499-527. https://doi.org/10.1080/10426914.2017.1401713.
  42. Tahir, S.I., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Dulaijan, S. U. and Al-Zahrani, M.M. (2021), "An integral four-variable hyperbolic HSDT for the wave propagation investigation of a ceramic-metal FGM plate with various porosity distributions resting on a viscoelastic foundation", Waves Random Complex Media, 34(3),1616-1639. https://doi.org/10.1080/17455030.2021.1942310
  43. Tatar, C. and Ozdemir, N. (2010), "Investigation of thermal conductivity and microstructure of the α-Al2O3 particulate reinforced aluminum composites (Al/ Al2O3-MMC) by powder metallurgy method", Physica B Condens. Matter, 405(3), 896-899. https://doi.org/10.1016/j.physb.2009.10.010.
  44. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/sem.2019.69.6.637.
  45. Vijaya Ramnath, B., Elanchezhian, C., Jaivignesh, M., Rajesh, S., Parswajinan, C. and Siddique Ahmed Ghias, A. (2014), "Evaluation of mechanical properties of aluminium alloy-alumina-boron carbide metal matrix composites", Mater. Des., 58, 332-338. https://doi.org/10.1016/j.matdes.2014.01.068.
  46. Wang, Z. Bing, L. and Han, Y. (2012), "Free vibration frequency variation analysis of a cracked aluminum alloy beam under high temperatures", J. Harbin Eng. Univ., 33(3), 320-324. https://doi.org/10.3969/j.issn.1006-7043.201103012.
  47. Widad, I.M., Al-samarraie, S.H. and Alsaior, M.M. (2013), "Vibration control analysis of a smart flexibale cantilever beam using smart material", J. Eng., 19(1), 83-95.
  48. Xiang, J., Matsumoto, T., Long, J. Wang, Y. and Jiang, Z. (2012), "A simple method to detect cracks in beam-like structures", Smart Struct. Syst., 9(4), 335-353. https://doi.org/10.12989/sss.2012.9.4.335.
  49. Xing, M.Z., Wang, Y.G. and Jiang, Z.X. (2013), "Dynamic Fracture Behaviors of Selected Aluminum Alloys Under Three-point Bending", Defence Technol., 9(4), 193-200. https://doi.org/10.1016/j.dt.2013.11.002.
  50. Yang, D.L., Yiu, Y.L., Li, S.B., Tao, J., Liu, C. and Liu, J.H. (2017), "Fatigue crack growth prediction of 7075 aluminum alloy based on the GMSVR model optimized by the artificial bee colony algorithm", Eng. Computation, 34(1), 1-14. https://doi.org/10.1016/j.prostr.2016.06.384.
  51. Yayli, M.O. (2014), "Free vibration behavior of a gradient elastic beam with varying cross section", Shock Vib., 801696. http://dx.doi.org/10.1155/2014/801696.
  52. Yee, Y.L. and Chee, K.S. (2013), "Damage detection and characterization using EMI technique under varying axial load", Smart Struct. Syst., 11(4), 349-364. https://doi.org/10.12989/sss.2013.11.4.349.
  53. Zheng, T. and Ji, T. (2012), "An approximate method for determining the static deflection and natural frequency of a cracked beam", J. Sound. Vib., 331(11), 2654-2670. https://doi.org/10.1016/j.jsv.2012.01.021.