References
- Abbasnejad, B. and Rezazadeh, G. (2012), "Mechanical behavior of a FGM micro-beam subjected to a nonlinear electrostatic pressure", Int. J. Mech. Mater. Des., 8(4), 381-392. https://doi.org/10.1007/s10999-012-9202-x.
- Akhavan, H., Ghadiri, M. and Zajkani, A. (2019), "A new model for the cantilever MEMS actuator in magnetorheological elastomer cored sandwich form considering the fringing field and Casimir effects", Mech. Syst. Signal Process., 121, 551-561. https://doi.org/10.1016/j.ymssp.2018.11.046.
- Al-Furjan, M., Habibi, M., Ghabussi, A., Safarpour, H., Safarpour, M. and A. Tounsi (2021), "Non-polynomial framework for stress and strain response of the FG-GPLRC disk using three-dimensional refined higher-order theory", Eng. Struct., 228, 111496. https://doi.org/10.1016/j.engstruct.2020.111496.
- Al-Furjan, M., Habibi, M., Rahimi, A., Chen, G., Safarpour, H., Safarpour, M. and Tounsi, A. (2020), "Chaotic simulation of the multi-phase reinforced thermo-elastic disk using GDQM", Eng. Comput., 1-24. https://doi.org/10.1007/s00366-020-01144-2.
- Al-Furjan, M., Habibi, M., Shan, L. and Tounsi, A. (2021), "On the vibrations of the imperfect sandwich higher-order disk with a lactic core using generalize differential quadrature method", Compos. Struct., 257, 113150. https://doi.org/10.1016/j.compstruct.2020.113150.
- Al-Furjan, M., Habibi, M., Ni, J., Jung, D.W. and Tounsi, A. (2022), "Frequency simulation of viscoelastic multi-phase reinforced fully symmetric systems", Eng. Comput., 38, 3725-3741. https://doi.org/10.1007/s00366-020-01200-x.
- Al-Furjan, M., Safarpour, H., Habibi, M., Safarpour, M. and Tounsi, A. (2022), "A comprehensive computational approach for nonlinear thermal instability of the electrically FG-GPLRC disk based on GDQ method", Eng. Comput., 1-18. https://doi.org/10.1007/s00366-020-01088-7.
- Al-Osta, M., Saidi, H., Tounsi, A., Al-Dulaijan, S., Al-Zahrani, M., Sharif, A. and Tounsi, A. (2021). "Influence of porosity on the hygro-thermo-mechanical bending response of an AFG ceramic-metal plates using an integral plate model", Smart. Struct. Syst., 28(4), 499-513. https://doi.org/10.12989/sss.2021.28.4.499.
- Alimirzaei, S., Mohammadimehr, M. and Tounsi, A. (2019). "Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions", Struct. Eng. Mech., 71(5), 485-502. https://doi.org/10.12989/sem.2019.71.5.485.
- Amiri, A., Masoumi, A. and Talebitooti, R. (2020), "Flutter and bifurcation instability analysis of fluid-conveying micro-pipes sandwiched by magnetostrictive smart layers under thermal and magnetic field", Int. J. Mech. Mater. Des., 16(3), 569-588. https://doi.org/10.1007/s10999-020-09487-w.
- Amiri, A., Masoumi, A., Talebitooti, R. and Safizadeh, M. S. (2019), "Wave propagation analysis of magneto-electro-thermo-elastic nanobeams using sinusoidal shear deformation beam model and nonlocal strain gradient theory", J. Theor. Appl. Vib. Acoust. 5(2), 153-176. https://doi.org/10.22064/TAVA.2020.104267.1128.
- Amiri, A., Rezazadeh, G., Shabani, R. and Khanchehgardan, A. (2016), "On the stability of an electrostatically-actuated functionally graded magneto-electro-elastic micro-beams under magneto-electric conditions", J. Solid Mech., 8(4), 756-772.
- Amiri, A. and Talebitooti, R. (2021), "Vibration and stability analysis of fluid-conveying sandwich micro-pipe with magnetorheological elastomer core, considering modified couple stress theory and geometrical nonlinearity", Eur. Phys. J. Plus, 136(11), 1109. https://doi.org/10.1140/epjp/s13360-021-02117-0.
- Amiri, A., Talebitooti, R. and Aliakbari, F. (2022), "Size-dependent dynamics and instability of sandwich magnetorheological elastomer (MRE)-cored shells in presence of moving flow, based on modified first strain gradient theory", Thin-Wall. Struct., 181, 109800. https://doi.org/10.1016/j.tws.2022.109800.
- Amiri, A., Vesal, R. and Talebitooti, R. (2019), "Flexoelectric and surface effects on size-dependent flow-induced vibration and instability analysis of fluid-conveying nanotubes based on flexoelectricity beam model", Int. J. Mech. Sci., 156, 474-485. https://doi.org/10.1016/j.ijmecsci.2019.04.018.
- Asghari Ardalani, A.R., Amiri, A., Talebitooti, R. and Safizadeh, M. S. (2021). "On wave dispersion characteristics of fluid-conveying smart nanotubes considering surface elasticity and flexoelectricity approach", Proc. Inst. Mech. Eng., Part C, 235(18), 3506-3518. https://doi.org/10.1177/0954406220965611.
- Attia, M.A. and Mohamed, S.A. (2018), "Pull-in instability of functionally graded cantilever nanoactuators incorporating effects of microstructure, surface energy and intermolecular forces", Int. J. Appl. Mech., 10(08), 1850091. https://doi.org/10.1142/S1758825118500916.
- Attia, M.A. and Mohamed, S.A. (2019), "Coupling effect of surface energy and dispersion forces on nonlinear size-dependent pull-in instability of functionally graded micro-/nanoswitches", Acta Mech., 230(3), 1181-1216. https://doi.org/10.1007/s00707-018-2345-6.
- Barretta, R., Feo, L., Luciano, R., de Sciarra, F.M. and Penna, R. (2016), "Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation", Compos. B Eng., 100, 208-219. https://doi.org/10.1016/j.compositesb.2016.05.052.
- Bellman, R., Kashef, B. and Casti, J. (1972), "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10(1), 40-52. https://doi.org/10.1016/0021-9991(72)90089-7.
- Bouafia, K., Selim, M.M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A., Bedia, E.A. and Tounsi, A. (2021), "Bending and free vibration characteristics of various compositions of FG plates on elastic foundation via quasi 3D HSDT model", Steel Compos. Struct., 41(4), 487-503. https://doi.org/10.12989/scs.2021.41.4.487.
- Ebrahimi, F. and Salari, E. (2015), "Size-dependent free flexural vibrational behavior of functionally graded nanobeams using semi-analytical differential transform method", Compos. B. Eng., 79, 156-169. https://doi.org/10.1016/j.compositesb.2015.04.010.
- Fakhari, M., Saeedi, N. and Amiri, A. (2016). "Size-dependent vibration and instability of magneto-electro-elastic nano-scale pipes containing an internal flow with slip boundary condition", Int. J. Eng., 29(7), 995-1004. https://doi.org/10.5829/idosi.ije.2016.29.07a.15.
- Fathalilou, M., Rezazadeh, G. and Mohammadian, A. (2019), "Stability analysis of a capacitive micro-resonator with embedded pre-strained SMA wires", Int. J. Mech. Mater. Des., 15(4), 681-693. https://doi.org/10.1007/s10999-018-09437-7.
- Hachemi, H., Bousahla, A.A., Kaci, A., Bourada, F., Tounsi, A., Benrahou, K. H., Tounsi, A., Al-Zahrani, M.M. and Mahmoud, S. (2021), "Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position", Steel Compos. Struct., 39(1), 51-64. https://doi.org/10.12989/scs.2021.39.1.051.
- Hasheminejad, S.M. and Vesal, R. (2021), "Numerical simulation of impact sound transmission control across a smart hybrid double floor system equipped with a genetically-optimized NES absorber", Appl. Acoust., 182, 108179. https://doi.org/10.1016/j.apacoust.2021.108179.
- Huang, X., Hao, H., Oslub, K., Habibi, M. and Tounsi, A. (2022), "Dynamic stability/instability simulation of the rotary size-dependent functionally graded microsystem", Eng. Comput., 38, 4163-4179. https://doi.org/10.1007/s00366-021-01399-3.
- Huang, Y., Karami, B., Shahsavari, D. and Tounsi, A. (2021). "Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels", Arch. Civ. Mech. Eng., 21(4), 139. https://doi.org/10.1007/s43452-021-00291-7.
- Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.
- Karamanli, A. and Vo, T.P. (2018), "Size dependent bending analysis of two directional functionally graded microbeams via a quasi-3D theory and finite element method", Compos. B. Eng., 144, 171-183. https://doi.org/10.1016/j.compositesb.2018.02.030.
- Kazemi, A., Vatankhah, R. and Farid, M. (2019), "Vibration analysis of size-dependent functionally graded micro-plates subjected to electrostatic and piezoelectric excitations", Eur. J. Mech. A Solids, 76, 46-56. https://doi.org/10.1016/j.euromechsol.2019.03.007.
- Khaniki, H.B. and Rajasekaran, S. (2018), "Mechanical analysis of non-uniform bi-directional functionally graded intelligent micro-beams using modified couple stress theory", Mate. Res. Express, 5(5), 055703. https://doi.org/10.1088/2053-1591/aabe62.
- Kouider, D., Kaci, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Tounsi, A. and Hussain, M. (2021), "An original four-variable quasi-3D shear deformation theory for the static and free vibration analysis of new type of sandwich plates with both FG face sheets and FGM hard core", Steel Compos. Struct., 41(2), 167-191. https://doi.org/10.12989/scs.2021.41.2.167.
- Li, X., Li, L. and Hu, Y. (2018), "Instability of functionally graded micro-beams via micro-structure-dependent beam theory", Appl. Math. Mech., 39(7), 923-952. https://doi.org/10.1007/s10483-018-2343-8.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Madenci, E. (2021), "Free vibration analysis of carbon nanotube RC nanobeams with variational approaches", Adv. Nan. Res., 11(2), 157-171. https://doi.org/10.12989/anr.2021.11.2.157.
- Madenci, E. (2021), "Free vibration and static analyses of metal-ceramic FG beams via high-order variational MFEM", Steel Compos. Struct., 39(5), 493-509. https://doi.org/10.12989/scs.2021.39.5.493.
- Madenci, E. and Gulcu, S. (2020), "Optimization of flexure stiffness of FGM beams via artificial neural networks by mixed FEM", Struct. Eng. Mech., 75(5), 633-642. https://doi.org/10.12989/sem.2020.75.5.633.
- Masoumi, A., Amiri, A., Vesal, R. and Rezazadeh, G. (2021), "Nonlinear static pull-in instability analysis of smart nanoswitch considering flexoelectric and surface effects via DQM", Proc. Inst. Mech. Eng. Part C, 235(24), 7821-7835. https://doi.org/10.1177/0954406221997481.
- Merazka, B., Bouhadra, A., Menasria, A., Selim, M.M., Bousahla, A.A., Bourada, F., Tounsi, A., Benrahou, K.H., Tounsi, A. and Al-Zahrani, M.M. (2021), "Hygro-thermo-mechanical bending response of FG plates resting on elastic foundations", Steel Compos. Struct., 39(5), 631-643. https://doi.org/10.12989/scs.2021.39.5.631.
- Mohammadi-Alasti, B., Rezazadeh, G., Borgheei, A.M., Minaei, S. and Habibifar, R. (2011), "On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure", Compos. Struct., 93(6), 1516-1525. https://doi.org/10.1016/J.COMPSTRUCT.2010.11.013.
- Mohammadi, M., Eghtesad, M. and Mohammadi, H. (2018), "Stochastic analysis of dynamic characteristics and pull-in instability of FGM micro-switches with uncertain parameters in thermal environments", Int. J. Mech. Mater. Des., 14(3), 417-442. https://doi.org/10.1007/s10999-017-9383-4.
- Mohammadi, M., Eghtesad, M. and Mohammadi, H. (2018), "Stochastic analysis of pull-in instability of geometrically nonlinear size-dependent FGM micro beams with random material properties", Compos. Struct., 200, 466-479. https://doi.org/10.1016/j.compstruct.2018.05.089.
- Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021). "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Struct., 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090.
- Ozutok, A. and Madenci, E. (2017), "Static analysis of laminated composite beams based on higher-order shear deformation theory by using mixed-type finite element method", Int. J. Mech. Sci., 130, 234-243. https://doi.org/10.1016/j.ijmecsci.2017.06.013.
- Raeisifard, H., Bahrami, M.N., Yousefi-Koma, A. and Fard, H.R. (2014), "Static characterization and pull-in voltage of a micro-switch under both electrostatic and piezoelectric excitations", Eur. J. Mech. A Solids, 44, 116-124. https://doi.org/10.1016/j.euromechsol.2013.10.012.
- Rahaeifard, M., Kahrobaiyan, M., Asghari, M. and Ahmadian, M. (2011), "Static pull-in analysis of microcantilevers based on the modified couple stress theory", Sens. Actuator. A Phys., 171(2), 370-374. https://doi.org/10.1016/j.sna.2011.08.025.
- Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Mech. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004.
- Rezaee, M. and Vesal, R. (2018), "Perturbation analysis of resonant and non-resonant excitations of a beam equipped with a nonlinear vibration absorber", Iran. J. Mech. Eng., 20(3), 109-132.
- Rezazadeh, G., Sadeghian, H. and Abbaspour, E. (2007), "A comprehensive model to study nonlinear behavior of multilayered micro beam switches", Microsyst. Technol., 14(1), 135-141. https://doi.org/10.1007/s00542-007-0404-3.
- Rezazadeh, G., Tahmasebi, A. and Zubstov, M. (2006), "Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage", Microsyst. Technol., 12(12), 1163-1170. https://doi.org/10.1007/s00542-006-0245-5.
- Setoodeh, A. and Afrahim, S. (2014), "Nonlinear dynamic analysis of FG micro-pipes conveying fluid based on strain gradient theory", Compos. Struct., 116, 128-135. https://doi.org/10.1016/j.compstruct.2014.05.013.
- Shariati, A., Habibi, M., Tounsi, A., Safarpour, H. and Safa, M. (2021), "Application of exact continuum size-dependent theory for stability and frequency analysis of a curved cantilevered microtubule by considering viscoelastic properties", Eng. Comput., 37, 3629-3648. https://doi.org/10.1007/s00366-020-01024-9.
- Shen, J., Wang, H. and Zheng, S. (2018), "Size-dependent pull-in analysis of a composite laminated micro-beam actuated by electrostatic and piezoelectric forces: Generalized differential quadrature method", Int. J. Mech. Sci., 135, 353-361. https://doi.org/10.1016/j.ijmecsci.2017.11.002.
- Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
- SoltanRezaee, M., Bodaghi, M., Farrokhabadi, A. and Hedayati, R. (2019), "Nonlinear stability analysis of piecewise actuated piezoelectric microstructures", Int. J. Mech. Sci., 160, 200-208. https://doi.org/10.1016/j.ijmecsci.2019.06.030.
- Tahir, S.I., Chikh, A., Tounsi, A., Al-Osta, M.A., Al-Dulaijan, S. U. and Al-Zahrani, M.M. (2021), "Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment", Compos. Struct., 269, 114030. https://doi.org/10.1016/j.compstruct.2021.114030.
- Talebitooti, R., Rezazadeh, S.O. and Amiri, A. (2019), "Comprehensive semi-analytical vibration analysis of rotating tapered AFG nanobeams based on nonlocal elasticity theory considering various boundary conditions via differential transformation method", Compos. B. Eng., 160, 412-435. https://doi.org/10.1016/j.compositesb.2018.12.085.
- Tang, Y., Lv, X. and Yang, T. (2019), "Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration", Compos. B. Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
- Trinh, L.C., Vo, T.P., Thai, H.T. and. Nguyen, T.K. (2018), "Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions", Compos. B. Eng., 134, 225-245. https://doi.org/10.1016/j.compositesb.2017.09.054.
- Wang, K.F. and Wang, B.L. (2014), "Influence of surface energy on the non-linear pull-in instability of nano-switches", Int. J. Nonlin. Mech., 59, 69-75. https://doi.org/10.1016/j.ijnonlinmec.2013.11.004.
- Yu, Y.P. and Wu, B.S. (2014), "An approach to predicting static responses of electrostatically actuated microbeam under the effect of fringing field and Casimir force", Int. J. Mech. Sci., 80, 183-192. https://doi.org/10.1016/j.ijmecsci.2014.01.015.
- Zaitoun, M.W., Chikh, A., Tounsi, A., Al-Osta, M.A., Sharif, A., Al-Dulaijan, S.U. and Al-Zahrani, M.M. (2022), "Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic-metal plate in a hygrothermal environment", Thin-Walled Struct., 170, 108549. https://doi.org/10.1016/j.tws.2021.108549.
- Zhang, W.M., Yan, H., Peng, Z.K. and Meng, G. (2014), "Electrostatic pull-in instability in MEMS/NEMS: A review", Sens. Actuator. A Phys., 214, 187-218. https://doi.org/10.1016/j.sna.2014.04.025.