Acknowledgement
This research is supported by National Natural Science Foundation of China (No. 62102212), Shandong Province Youth Innovation and Technology Program Innovation Team (No. 2022KJ296), Natural Science Foundation of Shandong (No. ZR202102190210) and Nanchang Major Science and Technology Project (No. 2023137).
References
- S. S. Alotaibi, H. A. Mengash, S. Dhahbi, S. Alazwari, R. Marzouk, M. A. Alkhonaini, A. Mohamed, and A. M. Hilal, "Quantum-enhanced machine learning algorithms for heart disease prediction," Human-centric Computing and Information Sciences, vol. 13, article no. 41, 2023. https://doi.org/10.22967/HCIS.2023.13.041
- D. Maheshwari, U. Ullah, P. A. O. Marulanda, A. G. O. Jurado, I. D. Gonzalez, J. M. O. Merodio, and B. Garcia-Zapirain, "Quantum machine learning applied to electronic healthcare records for ischemic heart disease classification," Human-centric Computing and Information Sciences, vol. 13, article no. 6, 2023. https://doi.org/10.22967/HCIS.2023.13.006
- K. Cheng, T. Fan, Y. Jin, Y. Liu, T. Chen, D. Papadopoulos, and Q. Yang, "SecureBoost: a lossless federated learning framework," IEEE Intelligent Systems, vol. 36, no. 6, pp. 87-98, 2021. https://doi.org/10.1109/MIS.2021.3082561
- W. J. Lu, Z. Huang, Q. Zhang, Y. Wang, and C. Hong, "Squirrel: a scalable secure two-party computation framework for training gradient boosting decision tree," in Proceedings of the 32nd USENIX Security Symposium (USENIX Security 23), Anaheim, CA, USA, 2023, pp. 6435-6451.
- S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin, "Falcon: honest-majority maliciously secure framework for private deep learning," Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 1, pp. 188-208, 2021. https://doi.org/10.2478/popets-2021-0011
- K. Hamada, D. Ikarashi, R. Kikuchi, and K. Chida, "Efficient decision tree training with new data structure for secure multi-party computation," Proceedings on Privacy Enhancing Technologies, vol. 2023, no. 1, pp. 343-364, 2023. https://doi.org/10.56553/popets-2023-0021
- M. Abspoel, D. Escudero, and N. Volgushev, "Secure training of decision trees with continuous attributes," Proceedings on Privacy Enhancing Technologies, vol. 2021, no. 1, pp. 167-187, 2021. https://doi.org/10.2478/popets-2021-0010
- M. Keller, "MP-SPDZ: a versatile framework for multi-party computation," in Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security, Virtual Event, USA, 2020, pp. 1575-1590. https://doi.org/10.1145/3372297.3417872