참고문헌
- Al Biajawi, M.I., Abdulrahman, M.F., Saod, W.M., Hilal, N., Embong, R. and Sor, N.H. (2023), "Investigation the effect of nanocarbon tube prepared from tea waste on microstructure and properties of cement mortar", Environ. Sci. Pollut. Res., 1-14. https://doi.org/10.1007/s11356-023-31606-1
- Al-Hadithi, A.I., Hilal, N.N., Al-Gburi, M. and Midher, A.H. (2023), "Structural behavior of reinforced lightweight self-compacting concrete beams using expanded polystyrene as coarse aggregate and containing polyethylene terephthalate fibers", Struct. Concrete, 24(5), 5808-5826. https://doi.org/10.1002/suco.202200381
- Alani, N.Y., Al-Jumaily, I.A. and Hilal, N. (2023), "Performance of self-compacting concrete containing nano clay at elevated temperatures and MgSO4 attack", Eur. J. Environ. Civil Eng., 27(10), 3001-3019. https://doi.org/10.1080/19648189.2022.2121766
- Alazwari, M.A. and Zenkour, A.M. (2022), "A quasi-3D refined theory for the vibration of functionally graded plates resting on Visco-Winkler-Pasternak foundations", Mathematics, 10(5), 716. https://doi.org/10.3390/math10050716
- Arefi, M.R. and Rezaei-Zarchi, S. (2012), "Synthesis of zinc oxide nanoparticles and their effect on the compressive strength and setting time of self-compacted concrete paste as cementitious composites", Int. J. Molecul. Sci., 13(4), 4340-4350. https://doi.org/10.3390/ijms13044340
- Bartos, P. (2004), Nanotechnology in construction, (1st Edition), Royal Society of Chemistry.
- Beigi, M.H., Berenjian, J., Lotfi Omran, O., Sadeghi Nik, A. and Nikbin, I.M. (2013), "An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete", Mater. Des., 50, 1019-1029. https://doi.org/10.1016/j.matdes.2013.03.046
- Benfrid, A., Benbakhti, A., Harrat, Z.R., Chatbi, M., Krour, B. and Bouiadjra, M.B. (2023), "Thermomechanical analysis of glass powder based eco-concrete panels: Limitations and performance evaluation", Periodica Polytech. Civil Eng., 67(4), 1284-1297. https://doi.org/10.3311/PPci.22781
- Bunea, G., Alexa-Stratulat, S.-M., Mihai, P. and Toma, I.-O. (2023), "Use of clay and titanium dioxide nanoparticles in mortar and concrete-A state-of-the-art analysis", Coatings, 13(3), 506. https://doi.org/10.3390/coatings13030506
- Chatbi, M., Krour, B., Benatta, M.A., Harrat, Z.R., Amziane, S. and Bouiadjra, M.B. (2022), "Bending analysis of nano-SiO2 reinforced concrete slabs resting on elastic foundation", Struct. Eng. Mech., Int. J., 84(5), 685-697. https://doi.org/10.12989/sem.2022.84.5.685
- Chatbi, M., Harrat, Z.R., Benatta, M.A., Krour, B., Hadzima-Nyarko, M., Isik, E., Czarnecki, S. and Bouiadjra, M.B. (2023), "Nano-Clay Platelet Integration for Enhanced Bending Performance of Concrete Beams Resting on Elastic Foundation: An Analytical Investigation", Materials, 16(14), 5040. https://doi.org/10.3390/ma16145040
- Clyne, T.W. and Withers, P.J. (1993), An Introduction to Metal Matrix Composites, Cambridge University Press.
- Dine Elhennani, S., Harrat, Z.R., Chatbi, M., Belbachir, A., Krour, B., Isik, E., Harirchian, E., Bouremana, M. and Bachir Bouiadjra, M. (2023), "Buckling and Free Vibration Analyses of Various Nanoparticle Reinforced Concrete Beams Resting on Multi-Parameter Elastic Foundations", Materials, 16(17), 5865. https://doi.org/10.3390/ma16175865
- Ericksen, J.L., Kinderlehrer, D., Kohn, R. and Lions, J.-L. (2012), Homogenization and Effective Moduli of Materials and Media, Springer Science & Business Media.
- Eshelby, J.D. (1957), "The determination of the elastic field of an ellipsoidal inclusion, and related problems", Proceedings of the royal society of London. Series A. Mathematical and physical Sciences, 241(1226), 376-396. https://doi.org/10.1098/rspa.1957.0133
- Ghannam, S., Najm, H. and Vasconez, R. (2016), "Experimental study of concrete made with granite and iron powders as partial replacement of sand", Sustain. Mater. Technol., 9, 1-9. https://doi.org/10.1016/j.susmat.2016.06.001
- Hamzi, S., Mechab, I., Abbad, H. and Elmeiche, N. (2021), "Vibration analysis of viscoelastic fgm nanoscale plate resting on viscoelastic medium using higher-order theory", Periodica Polytech. Civil Eng., 65(1), 255-275. https://doi.org/10.3311/PPci.16010
- Harrat, Z.R., Amziane, S., Krour, B. and Bachir Bouiadjra, M. (2021), "On the static behavior of nano SiO2 based concrete beams resting on an elastic foundation", Comput. Concrete, Int. J., 27(6), 575-583. https://doi.org/10.12989/cac.2021.27.6.575
- Heidari, A. and Tavakoli, D. (2013), "A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiOv particles", Constr. Build. Mater., 38, 255-264. https://doi.org/10.1016/j.conbuildmat.2012.07.110
- Huseien, G.F., Khalid, N.H.A. and Mirza, J. (2022), Nanotechnology for Smart Concrete, (1st Edition), CRC Press.
- Kaikea, A., Achoura, D., Duplan, F. and Rizzuti, L. (2014), "Effect of mineral admixtures and steel fiber volume contents on the behavior of high performance fiber reinforced concrete", Mater. Des., 63, 493-499. https://doi.org/10.1016/j.matdes.2014.06.066
- Karama, M., Afaq, K. and Mistou, S. (2003), "Mechanical behaviour of laminated composite beam by the new multilayered laminated composite structures model with transverse shear stress continuity", Int. J. Solids Struct., 40(6), 1525-1546. https://doi.org/10.1016/S0020-7683(02)00647-9
- Kecir, A., Chatbi, M., Harrat, Z.R., Bachir Bouiadjra, M., Bouremana, M. and Krour, B. (2024), "Enhancing the Mechanical Performance of Concrete Slabs through the Incorporation of Nano-sized Iron Oxide Particles (Fe2O3): Non-local Bending Analysis", Periodica Polytech. Civil Eng., 68(3), 842-858. https://doi.org/10.3311/PPci.23016
- Khetib, M., Abbad, H., Elmeiche, N. and Mechab, I. (2019), "Effect of the Viscoelastic Foundations on the Free Vibration of Functionally Graded Plates", Int. J. Struct. Stabil. Dyn., 19(11), 1950136. https://doi.org/10.1142/s0219455419501360
- Kiasat, M., Zamani, H. and Aghdam, M. (2014), "On the transient response of viscoelastic beams and plates on viscoelastic medium", Int. J. Mech. Sci., 83, 133-145. https://doi.org/10.1016/j.ijmecsci.2014.03.007
- Lee, H.-S., Lee, J.-Y. and Yu, M.-Y. (2003), "Influence of iron oxide pigments on the properties of concrete interlocking blocks", Cement Concrete Res., 33(11), 1889-1896. https://doi.org/10.1016/S0008-8846(03)00209-6
- Mondal, P., Shah, S.P., Marks, L.D. and Gaitero, J.J. (2010), "Comparative study of the effects of microsilica and nanosilica in concrete", Transport. Res. Record, 2141(1), 6-9. https://doi.org/10.3141/2141-02
- Mudhaffar, I.M., Tounsi, A., Chikh, A., Al-Osta, M.A., Al-Zahrani, M.M. and Al-Dulaijan, S.U. (2021), "Hygro-thermo-mechanical bending behavior of advanced functionally graded ceramic metal plate resting on a viscoelastic foundation", Structures, 33, 2177-2189. https://doi.org/10.1016/j.istruc.2021.05.090
- Nazari, A., Riahi, S., Riahi, S., Shamekhi, S.F. and Khademno, A. (2010), "The effects of incorporation Fe2O3 nanoparticles on tensile and flexural strength of concrete", J. Am. Sci., 6(4), 90-93.
- Priyadarshana, T. and Dissanayake, R. (2000), "Chloride penetration and sulfate resistance of concrete incorporating nano-silica (nano-SiO2), micro-silica (micro-SiO2) and fly ash", environment, 206, 1. https://doi.org/10.15224/ 978-1-63248-096-5-14
- Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51(4), 745-752. https://doi.org/10.1115/1.3167719
- Reddy, J.N. (1990), "A general non-linear third-order theory of plates with moderate thickness", Int. J. Non-Linear Mech., 25(6), 677-686. https://doi.org/10.1016/0020-7462(90)90006-U
- Rong, Z., Sun, W., Xiao, H. and Jiang, G. (2015), "Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites", Cement Concrete Compos., 56, 25-31. https://doi.org/10.1016/j.cemconcomp.2014.11.001
- Silvestre, J., Silvestre, N. and De Brito, J. (2015), "Review on concrete nanotechnology", Eur. J. Environ. Civil Eng., 20(4), 455-485. https://doi.org/10.1080/19648189.2015.1042070
- Sofiyev, A.H., Zerin, Z. and Kuruoglu, N. (2020), "Dynamic behavior of FGM viscoelastic plates resting on elastic foundations", Acta Mechanica, 231(1), 1-17. https://doi.org/10.1007/s00707-019-02502-y
- Thai, H.-T. and Choi, D.-H. (2011), "A refined plate theory for functionally graded plates resting on elastic foundation", Compos. Sci. Technol., 71(16), 1850-1858. https://doi.org/10.1016/j.compscitech.2011.08.016
- Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y
- Whitney, J. (1973), "Shear correction factors for orthotropic laminates under static load". https://doi.org/10.1115/1.3422950
- Zamani, H., Aghdam, M. and Sadighi, M. (2017), "Free vibration analysis of thick viscoelastic composite plates on visco-Pasternak foundation using higher-order theory", Compos. Struct., 182, 25-35. https://doi.org/10.1016/j.compstruct.2017.08.101
- Zenkour, A.M. and Alghamdi, N.A. (2008), "Thermoelastic bending analysis of functionally graded sandwich plates", J. Mater. Sci., 43(8), 2574-2589. https://doi.org/10.1007/s10853-008-2476-6