DOI QR코드

DOI QR Code

A state-of-the-art analysis of fresh, mechanical, durability and microstructural characterization of wastewater concrete

  • Nabil Ben Kahla (Department of Civil Engineering, College of Engineering, King Khalid University) ;
  • Ali Raza (Department of Civil Engineering, University of Engineering and Technology Taxila) ;
  • Muhammad Arshad (Department of Civil Engineering, University of Engineering and Technology Taxila) ;
  • Ahmed Babeker Elhag (Department of Civil Engineering, College of Engineering, King Khalid University)
  • Received : 2023.11.12
  • Accepted : 2024.07.15
  • Published : 2024.02.25

Abstract

The process of concrete production consumes an immense volume of water, with approximately one billion metric tons of freshwater being utilized for tasks such as aggregate washing, fresh concrete production, and concrete curing. The accessibility of clean water for the public is hindered by the limited availability of water resources, primarily due to the rapid expansion of industries such as tanneries, stone quarries, and concrete manufacturing. These industries not only consume substantial amounts of freshwater but also generate significant volumes of various types of waste. Therefore, the use of fresh water in concrete production should be minimized. Few studies have reviewed the production of concrete using wastewater to derive practical and applicable findings for the industry. Thus, this study thoroughly explores the physical and chemical effects of wastewater on concrete, examining aspects like durability, hardened properties, and rheological characteristics. It identifies key factors that can compromise concrete properties when exposed to wastewater. The scarcity of research on integrating wastewater into concrete production underscores the urgent necessity for innovative approaches and methodologies in this field. While the inclusion of wash water typically reduces the workability of fresh concrete, it often enhances its compressive strength. Notably, significant improvements have been observed when using tertiary processed wastewater, wash water, polyvinyl alcohol-based wash water (PVAW), and reclaimed water in the concrete mixing process. The application of tertiary treatment to wastewater resulted in a notable enhancement of compressive strength, showing increases of up to 7%. In contrast, wastewater treated through secondary methods experienced a decline in strength ranging from 9% to 18% over a period of six months. However, the use of reclaimed wastewater demonstrated an improvement in strength by 8% to 17%, depending on the concentration level ranging from 25% to 100%. In contrast, the utilization of secondary processed wastewater and industrial water has a minimal impact on the concrete's strength.

Keywords

Acknowledgement

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP 2/176/45.

References

  1. Abbas, A.N., Abd, L.M. and Majeed, M.W. (2019), "Effect of hospital effluents and sludge wastewater on foundations produced from different types of concrete", Civil Eng. J., 5(4), 819-831. https://doi.org/10.28991/cej-2019-03091291
  2. Abushanab, A. and Alnahhal, W. (2022), "Performance of sustainable concrete incorporating treated domestic wastewater, RCA, and fly ash", Constr. Build. Mater., 329, 127118. https://doi.org/10.1016/j.conbuildmat.2022.127118
  3. ACI Committee (2001), Guide to durable concrete; American Concrete Institute.
  4. Ahmadi, B. and Al-Khaja, W. (2001), "Utilization of paper waste sludge in the building construction industry", Resour. Conserv. Recycl., 32(2), 105-113. https://doi.org/10.1016/S0921-3449(01)00051-9
  5. Al-Ghusain, I. and Terro, M. (2003), "Use of treated wastewater for concrete mixing in Kuwai", Kuwait J. Sci. Eng., 30(1), 213-228.
  6. Al-Jabri, K.S., Al-Saidy, A.H., Taha, R. and Al-Kemyani, A.J. (2011), "Effect of using wastewater on the properties of high strength concrete", Procedia Eng., 14, 370-376. https://doi.org/10.1016/j.proeng.2011.07.046
  7. Al-Rawi, S. and Taysi, N. (2018), "Performance of self-compacting geopolymer concrete with and without GGBFS and steel fiber", Adv. Concrete Constr., Int. J., 6(4), 323-344. https://doi.org/10.12989/acc.2018.6.4.323
  8. ACI (American Concrete Institute) Committee 318 (2008), Building code requirements for structural concrete (ACI 318-08) and commentary; American Concrete Institute, Farmington Hills, MI, USA.
  9. Asadollahfardi, G. and Mahdavi, A.R. (2019), "The feasibility of using treated industrial wastewater to produce concrete", Struct. Concrete, 20(1), 123-132. https://doi.org/10.1002/suco.201700255
  10. Asadollahfardi, G., Asadi, M., Jafari, H., Moradi, A. and Asadollahfardi, R. (2015), "Experimental and statistical studies of using wash water from ready-mix concrete trucks and a batching plant in the production of fresh concrete", Constr. Build. Mater., 98, 305-314. https://doi.org/10.1016/j.conbuildmat.2015.08.053
  11. Asadollahfardi, G., Delnavaz, M., Rashnoiee, V., Fazeli, A. and Gonabadi, N. (2016), "Dataset of producing and curing concrete using domestic treated wastewater", Data Brief, 6, 316-325. https://doi.org/10.1016/j.dib.2015.12.020
  12. Asadollahfardi, G., Afsharnasab, M., Rasoulifard, M.H. and Tayebi Jebeli, M. (2022), "Predicting of acid red 14 removals from synthetic wastewater in the advanced oxidation process using artificial neural networks and fuzzy regression", Rendiconti Lincei. Scienze Fisiche e Naturali, 33(1), 115-126. https://doi.org/10.1007/s12210-021-01043-8
  13. ASTM 94 (1916), Standard Specification for Ready Mixed Concrete, American Society for Testing and Materials, West Conshohocken, PA, USA.
  14. Babu, G.R., Reddy, B.M. and Ramana, N.V. (2018), "Quality of mixing water in cement concrete "a review"", Materials Today: Proceedings, 5(1), 1313-1320. https://doi.org/10.1016/j.matpr.2017.11.216
  15. Borger, J., Carrasquillo, R.L. and Fowler, D.W. (1994), "Use of recycled wash water and returned plastic concrete in the production of fresh concrete", Adv. Cement Based Mater., 1(6), 267-274. https://doi.org/10.1016/1065-7355(94)90035-3
  16. Cebeci, Z. and Saatci, A. (1989), "Domestic sewage as mixing water in concrete", Mater. J., 86(5), 503-506. https://doi.org/10.14359/9743
  17. Chatveera, B. and Lertwattanaruk, P. (2009), "Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture", J. Environ. Manag., 90(5), 1901-1908. https://doi.org/10.1016/j.jenvman.2009.01.008
  18. Chatveera, B., Lertwattanaruk, P. and Makul, N. (2006), "Effect of sludge water from ready-mixed concrete plant on properties and durability of concrete", Cement Concrete Compos., 28(5), 441-450. https://doi.org/10.1016/j.cemconcomp.2006.01.001
  19. Chini, A.R., Muszynski, L.C., Bergin, M. and Ellis, B.S. (2001), "Reuse of wastewater generated at concrete plants in Florida in the production of fresh concrete", Magaz. Concrete Res., 53(5), 311-319. https://doi.org/10.1680/macr.2001.53.5.311
  20. De Belie, N., Verselder, H.J., De Blaere, B., Van Nieuwenburg, D. and Verschoore, R. (1996), "Influence of the cement type on the resistance of concrete to feed acids", Cement Concrete Resourc., 26(11), 1717-1725. https://doi.org/10.1016/S0008-8846(96)00155-X
  21. de Matos, P.R., Prudencio Jr, L.R., Pilar, R., Gleize, P.J.P. and Pelisser, F. (2020), "Use of recycled water from mixer truck wash in concrete: Effect on the hydration, fresh and hardened properties", Constr. Build. Mater., 230, 116981. https://doi.org/10.1016/j.conbuildmat.2019.116981
  22. Duarte, N.C., Amaral, A.E.D.S., Gomes, B.G.L.A., Siqueira, G.H. and Tonetti, A.L. (2019), "Water reuse in the production of non-reinforced concrete elements: an alternative for decentralized wastewater management", J. Water Sanitat. Hygiene Develop., 9(3), 596-600. https://doi.org/10.2166/washdev.2019.106
  23. El Ouni, M.H., Abdellatif, S., Raza, A., Haider, H. and Kahla, N.B. (2023), "Mechanical, durability and microstructural characterization of various types of outflows in the production of glass fiber-reinforced sustainable concrete", J. Build. Eng., 78, 107699. https://doi.org/10.1016/j.jobe.2023.107699
  24. EN 1008 (2002), Mixing water for concrete-Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete; British Standards Institution, London, UK.
  25. Eriksson, E., Auffarth, K., Henze, M. and Ledin, A. (2002), "Characteristics of grey wastewater", Urban Water, 4(1), 85-104. https://doi.org/10.1016/S1462-0758(01)00064-4
  26. Fattah, K.P., Al-Tamimi, A.K., Hamweyah, W. and Iqbal, F. (2017), "Evaluation of sustainable concrete produced with desalinated reject brine", Int. J. Sustain. Built Environ., 6(1), 183-190. https://doi.org/10.1016/j.ijsbe.2017.02.004
  27. Ganesan, N., Sahana, R. and Indira, P.V. (2017), "Effect of hybrid fibers on tension stiffening of reinforced geopolymer concrete", Adv. Concrete Constr., Int. J., 5(1), 75-86. https://doi.org/10.12989/acc.2017.5.1.075
  28. Ghrair, A.M., Al-Mashaqbeh, O.A., Sarireh, M.K., Al-Kouz, N., Farfoura, M. and Megdal, S.B. (2018), "Influence of grey water on physical and mechanical properties of mortar and concrete mixes", Ain Shams Eng. J., 9(4), 1519-1525. https://doi.org/10.1016/j.asej.2016.11.005
  29. Guo, Z., Sun, Y., Pan, S.Y. and Chiang, P.C. (2019), "Integration of green energy and advanced energy-efficient technologies for municipal wastewater treatment plants", Int. J. Environ. Res. Public Health, 16(7), 1282. https://doi.org/10.3390/ijerph16071282
  30. Ismail, Z.Z. and Al-Hashmi, E.A. (2011), "Assessing the recycling potential of industrial wastewater to replace fresh water in concrete mixes: application of polyvinyl acetate resin wastewater", J. Cleaner Product., 19(2-3), 197-203. https://doi.org/10.1016/j.jclepro.2010.09.011
  31. Jian, Y., Huang, C., He, Y., Xu, W., Zhu, J. and Liu, Z. (2024), "Investigating the applicability of waste foam concrete for phosphorus recovery in real pig wastewater based on the effect of organic matter on the HAP crystallisation method", Biochem. Eng. J., 202, 109150. https://doi.org/10.1016/j.bej.2023.109150
  32. Jindal, B.B., Singhal, D., Sharma, S.K. and Ashish, D.K. (2017), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., Int. J., 5(1), 17-29. https://doi.org/10.12989/acc.2017.19.2.017
  33. Joulani, N. and Awad, R.A.K. (2019), "The effect of using wastewater from stone industry in replacement of fresh water on the properties of concrete", J. Environ. Protect., 10(02), 276. https://doi.org/10.4236/jep.2019.102016
  34. Karthikeyan, M. and Asha, B. (2014), "Experimental analysis of regenerate the treated wastewater in concrete", Int. J. Wine Res., 10, 32-37.
  35. Keneshlo, S., Asadollahfardi, G., Homami, P., Salehi, A.M., Akarbardoost, J. and Tayebi Jebeli, M. (2024), "The effect of using treated domestic wastewater with different pHs on workability, mechanical, and durability properties of self-compacting concrete", Environ. Sci. Pollut. Res., 31(6), 8633-8649. https://doi.org/10.1007/s11356-023-31725-9
  36. Kuroda, M., Watanabe, T. and Terashi, N. (2000), "Increase of bond strength at interfacial transition zone by the use of fly ash", Cement Concrete Res., 30(2), 253-258. https://doi.org/10.1016/S0008-8846(99)00241-0
  37. Laibao, L., Yunsheng, Z., Wenhua, Z., Zhiyong, L. and Lihua, Z. (2013), "Investigating the influence of basalt as mineral admixture on hydration and microstructure formation mechanism of cement", Constr. Build. Mater., 48, 434-440. https://doi.org/10.1016/j.conbuildmat.2013.07.021
  38. Mane, S., Faizal, S., Prakash, G., Bhandarkar, S. and Kumar, V. (2019), "Use of sewage treated water in concrete", Int. J. Res. Eng. Sci. Manag., 2(6), 210-213.
  39. Manzur, T., Sultana, S.L., Mahmud, S., Papry, S.A., Saha, S. and Choudhury, M.R. (2018), "Performance of Cement Mortars under Tannery Wastewater", KSCE J. Civil Eng., 22, 4461-4472. https://doi.org/10.1007/s12205-018-1405-8
  40. Meena, K. and Luhar, S. (2019), "Effect of wastewater on properties of concrete", J. Build. Eng., 21, 106-112. https://doi.org/10.1016/j.jobe.2018.10.003
  41. Mehrdadi, N., Akbarian, A. and Haghollahi, A. (2009), "Using domestic treated wastewater for producing and curing concrete", J. Environ. Stud., 35(50), 129-136.
  42. Midhun, M.S., Rao, T.G. and Srikrishna, T.C. (2018), "Mechanical and fracture properties of glass fiber reinforced geopolymer concrete", Adv. Concrete Constr., Int. J., 6(1), 29-45. https://doi.org/10.12989/acc.2018.6.1.029
  43. Monzo, J., Paya, J., Borrachero, M.V. and Girbes, I. (2003), "Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars", Waste Manag., 23(4), 373-381. https://doi.org/10.1016/S0956-053X(03)00034-5
  44. More, A.B., Ghodake, R.B., Nimbalkar, H.N., Chandake, P.P., Maniyar, S.P. and Narute, Y.D. (2014), "Reuse of treated domestic wastewater in concrete-A sustainable approach", Indian J. Appl. Res., 4, 182-184. https://doi.org/10.15373/2249555X/APR2014/55
  45. Mosaberpanah, M.A. and Eren, O. (2017), "Effect of quartz powder, quartz sand and water curing regimes on mechanical properties of UHPC using response surface modelling", Adv. Concrete Constr., Int. J., 5(5), 481-492. https://doi.org/10.12989/acc.2017.5.5.481
  46. Naamane, S., Rais, Z. and Taleb, M. (2016), "The effectiveness of the incineration of sewage sludge on the evolution of physicochemical and mechanical properties of Portland cement", Constr. Build. Mater., 112, 783-789. https://doi.org/10.1016/j.conbuildmat.2016.02.121
  47. Nirmalkumar, K. and Sivakumar, V. (2008), "A study on the durability impact of concrete by using recycled waste water", J. Indust. Pollut. Control, 24(1), 1-8.
  48. Noruzman, A.H., Muhammad, B., Ismail, M. and Abdul-Majid, Z. (2012), "Characteristics of treated effluents and their potential applications for producing concrete", J. Environ. Manag., 110, 27-32. https://doi.org/10.1016/j.jenvman.2012.05.019
  49. O'Connell, M., McNally, C. and Richardson, M.G. (2012), "Performance of concrete incorporating GGBS in aggressive wastewater environments", Constr. Build. Mater., 27(1), 368-374. https://doi.org/10.1016/j.conbuildmat.2011.07.036
  50. Patil, A.A., Chore, H.S. and Dode, P.A. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., Int. J., 2(1), 29-37. https://doi.org/10.12989/acc.2014.2.1.029
  51. Pavlik, V. and Uncik, S. (1997), "The rate of corrosion of hardened cement pastes and mortars with additive of silica fume in acids", Cement Concrete Resourc., 27(11), 1731-1745. https://doi.org/10.1016/S0008-8846(97)82702-0
  52. Peighambarzadeh, F.S., Asadollahfardi, G. and Akbardoost, J. (2020), "The effects of using treated wastewater on the fracture toughness of the concrete", Australian J. Civil Eng., 18(1), 56-64. https://doi.org/10.1080/14488353.2020.1712933
  53. Raza, A., Shah, S.A.R., Kazmi, S.N.H., Ali, R.Q., Akhtar, H., Fakhar, S., Khan, F.N. and Mahmood, A. (2020), "Performance evaluation of concrete developed using various types of wastewater: A step towards sustainability", Constr. Build. Mater., 262, 120608. https://doi.org/10.1016/j.conbuildmat.2020.120608
  54. Raza, A., Rafique, U. and ul Haq, F. (2021), "Mechanical and durability behavior of recycled aggregate concrete made with different kinds of wastewater", J. Build. Eng., 34, 101950. https://doi.org/10.1016/j.jobe.2020.101950
  55. Sandrolini, F. and Franzoni, E. (2001), "Waste wash water recycling in ready-mixed concrete plants", Cement Concrete Res., 31(3), 485-489. https://doi.org/10.1016/S0008-8846(00)00468-3
  56. Saxena, S. and Tembhurkar, A.R. (2018), "Impact of use of steel slag as coarse aggregate and wastewater on fresh and hardened properties of concrete", Constr. Build. Mater., 165, 126-137. https://doi.org/10.1016/j.conbuildmat.2018.01.030
  57. Saxena, S. and Tembhurkar, A.R. (2019), "Developing biotechnological technique for reuse of wastewater and steel slag in bio-concrete", J. Cleaner Product., 229, 193-202. https://doi.org/10.1016/j.jclepro.2019.04.363
  58. Sharaky, I.A., Elamary, A.S. and Alharthi, Y.M. (2022), "Effect of waste basalt fines and recycled concrete components on mechanical, water absorption, and microstructure characteristics of concrete", Materials, 15(13), 4385. https://doi.org/10.3390/ma15134385
  59. Shekarchi, M., Yazdian, M. and Mehrdadi, N. (2012), "Use of biologically treated domestic waste water in concrete", Kuwait J. Sci. Eng., 39(2B), 97-111.
  60. Singhal, D. (2017), "Development of mix design method for geopolymer concrete", Adv. Concrete Constr., Int. J., 5(4), 377-390. https://doi.org/10.12989/acc.2017.5.4.377
  61. Singhal, D. and Jindal, B.B. (2017), "Experimental study on geopolymer concrete prepared using high-silica RHA incorporating alccofine", Adv. Concrete Constr., Int. J., 5(4), 345-358. https://doi.org/10.12989/acc.2017.5.4.345
  62. Su, N., Miao, B. and Liu, F.S. (2002), "Effect of wash water and underground water on properties of concrete", Cement Concrete Res., 32(5), 777-782. https://doi.org/10.1016/S0008-8846(01)00762-1
  63. Tasong, W.A., Cripps, J.C. and Lynsdale, C.J. (1998), "Aggregate-cement chemical interactions", Cement Concrete Res., 28(7), 1037-1048. https://doi.org/10.1016/S0008-8846(98)00067-2
  64. Tay, J.-H. (1989), "Reclamation of wastewater and sludge for concrete making", Resour. Conserv. Recycl., 2(3), 211-227. https://doi.org/10.1016/0921-3449(89)90026-8
  65. Tay, J.H. and Yip, W.K. (1987), "Use of reclaimed wastewater for concrete mixing", J. Environ. Eng., 113(5), 1156-1161. https://doi.org/10.1061/(ASCE)0733-9372(1987)113:5(1156)
  66. Terro, M. and Al-Ghusain, I. (2003), "Mechanical properties of concrete made with treated wastewater at ambient and elevated temperatures", Kuwait J. Sci. Eng., 30(1), 229-244.
  67. Venkateswara, R.V.S.R. and Jayaveera, K.N. (2004), Effects of alkalinity present in water on strength and setting properties of fly ash concrete, CI-Premier PTE Ltd., Singapore.
  68. Yan, S., Sagoe-Crentsil, K. and Shapiro, G. (2012), "Properties of cement mortar incorporating de-inking waste-water from waste paper recycling", Constr. Build. Mater., 29, 51-55. https://doi.org/10.1016/j.conbuildmat.2011.09.012
  69. Zhang, L., Zhang, Y., Liu, C., Liu, L. and Tang, K. (2017), "Study on microstructure and bond strength of interfacial transition zone between cement paste and high-performance lightweight aggregates prepared from ferrochromium slag", Constr. Build. Mater., 142, 31-41. https://doi.org/10.1016/j.conbuildmat.2017.03.083