DOI QR코드

DOI QR Code

Acceleration-based fuzzy sliding mode control for high-rise structures with hybrid mass damper

  • Zhenfeng Lai (Earthquake Engineering Research & Test Center (EERTC), Guangzhou University) ;
  • Yanhui Liu (Earthquake Engineering Research & Test Center (EERTC), Guangzhou University) ;
  • Dongfan Ye (Earthquake Engineering Research & Test Center (EERTC), Guangzhou University) ;
  • Ping Tan (Earthquake Engineering Research & Test Center (EERTC), Guangzhou University) ;
  • Fulin Zhou (Earthquake Engineering Research & Test Center (EERTC), Guangzhou University)
  • Received : 2023.02.16
  • Accepted : 2023.11.10
  • Published : 2024.06.25

Abstract

The Hybrid Mass Damper (HMD) has proven effective in mitigating vibrations in high-rise structures subject to seismic and wind-induced excitations. One derivative configuration of the HMD mounts an Active Mass Damper (AMD) atop a Tuned Mass Damper (TMD). However, the control efficacy of such HMDs may be compromised when confronted with loads that exceed their design parameters. Additionally, the confined structural space within high-rise structures often limits the feasibility and economic viability of retrofitting HMD systems. This study introduces an Acceleration-based Fuzzy Power Approach Rate Sliding Mode Control (AFP-SMC) algorithm aimed at enhancing the control efficacy of HMDs while minimizing their stroke and force output requirements. Employing the Canton Tower as a research prototype, an analytical model incorporating HMDs was established, and a comparative analysis between the AFP-SMC and Linear Quadratic Gaussian (LQG) control algorithms was conducted for efficacy. The control performance of the AFP-SMC control algorithm under different control parameter variations was investigated. Furthermore, by experimentally assessing the AMD subsystem within the Canton Tower, friction and ripple force formulas were derived to bolster the analytical model, thereby validating the robustness of the AFP-SMC algorithm. The results show that the proposed AFP-SMC algorithm effectively reduces the vibration response of the structure and the stroke and control force output of HMDs, and exhibits superior overall control performance and robustness compared to the LQG algorithm.

Keywords

Acknowledgement

The research described in this paper was financially supported by the Natural Science Foundation of Guangdong Province of China (No. 2021A1515010586), National Natural Science Foundation of China (52378293), National Key R&D Project of China (No. 2021YFE0112200).

References

  1. Alli, H. and Yakut, O. (2005), "Fuzzy sliding-mode control of structures", Eng. Struct., 27(2), 277-284. https://doi.org/10.1016/j.engstruct.2004.10.007
  2. Baghaei, K.A., Ghaffarzadeh. H., Hadigheh, S.A. and Dias-da-Costa, D. (2019), "Chattering-free sliding mode control with a fuzzy model for structural applications", Struct. Eng. Mech., Int. J., 69(3), 307-315. https://doi.org/10.12989/sem.2019.69.3.307
  3. Cao, H. and Li, Q.S. (2004), "New control strategies for active tuned mass damper systems", Comput. Struct., 82(27), 2341-2350. https://doi.org/10.1016/j.compstruc.2004.05.010
  4. Concha, A., Thenozhi, S., Betancourt, R.J. and Gadi, S.K. (2021), "A tuning algorithm for a sliding mode controller of buildings with ATMD", Mech. Syst. Signal Pr., 154, 107539. https://doi.org/10.1016/j.ymssp.2020.107539
  5. Esteki, K., Bagchi, A. and Sedaghati, R. (2015), "Semi-active control of seismic response of a building using MR fluid-based tuned mass damper", Smart Struct. Syst., Int. J., 16(5), 807-833. https://doi.org/10.12989/sss.2015.16.5.807
  6. Fallah, A.Y. and Taghikhany, T. (2015), "Sliding mode fault detection and fault-tolerant control of smart dampers in semi-active control of building structures", Smart Mater. Struct., 24(12), 125030. https://doi.org/10.1088/0964-1726/24/12/125030
  7. Ghaffarzadeh, H. and Aghabalaei, K. (2017), "Adaptive fuzzy sliding mode control of seismically excited structures", Smart Struct. Syst., Int. J., 19(5), 577-585. https://doi.org/10.12989/sss.2017.19.5.577
  8. Ho, C.C. and Ma, C.K. (2007), "Active vibration control of structural systems by a combination of the linear quadratic Gaussian and input estimation approaches", J. Sound Vib., 301(3-5), 429-449. https://doi.org/10.1016/j.jsv.2005.12.061
  9. Iannuzzi, A. and Spinelli, P. (1987), "Artificial wind generation and structural response", J. Struct. Eng., 113(12), 2382-2398. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:12(2382)
  10. Khansefid, A. and Bakhshi, A. (2019), "Advanced two-step integrated optimization of actively controlled nonlinear structure under mainshock-aftershock sequences", J. Vib. Control, 25(4), 748-762. https://doi.org/10.1177/107754631879553
  11. Koutsoloukas, L., Nikitas, N. and Aristidou, P. (2022), "Passive, semi-active, active and hybrid mass dampers: A literature review with associated applications on building-like structures", Develop. Built Environ., 100094. https://doi.org/10.1016/j.dibe.2022.100094
  12. Kumar, G., Kumar, R. and Kumar, A. (2023), "A Review of the Controllers for Structural Control", Arch. Computat. Methods Eng., 30, 3977-4000. https://doi.org/10.1007/s11831-023-09931-y
  13. Mamat, N., Yakub, F., Salim, S., Ali, M. and Putra, S. (2018), "Analysis of Implementation Control Device in Hybrid Mass Damper System", In: 2018 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS 2018), Shah Alam, Malaysia, October. https://doi.org/10.1109/I2CACIS.2018.8603683
  14. Miyamoto, K., Sato, D. and She, J. (2018), "A new performance index of LQR for combination of passive base isolation and active structural control", Eng. Struct., 157(2018), 280-299. https://doi.org/10.1016/j.engstruct.2017.11.070
  15. Nagashima, I., Maseki, R., Asami, Y., Hirai, J. and Abiru, H. (2001), "Performance of hybrid mass damper system applied to a 36-storey high-rise building", Earthq. Eng. Struct. Dyn., 30(11), 1615-1637. https://doi.org/10.1002/eqe.84
  16. Nishitani, A. (1998), "Application of active structural control in Japan", Prog. Struct. Eng. Mater., 1(3), 301-307. https://doi.org/10.1002/pse.2260010312
  17. Ohtori, Y., Christenson, R.E., Spencer Jr, B.F. and Dyke, S.J. (2004), "Benchmark Control Problems for Seismically Excited Nonlinear Buildings", J. Eng. Mech., 130(4), 366-385. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:4(366)
  18. Rana, R. and Soong, T.T. (1998), "Parametric study and simplified design of tuned mass dampers", Eng. Struct., 20(3), 193-204. https://doi.org/10.1016/S0141-0296(97)00078-3
  19. Sakamoto, M. and Kobori, T. (1995), "Research, development and practical applications on structural response control of buildings", Smart Mater. Struct., 4(1A), A58. https://doi.org/110.1088/0964-1726/4/1A/008
  20. Samaras, E., Shinzuka, M. and Tsurui, A. (1985), "ARMA representation of random processes", J. Eng. Mech., 111(3), 449-461. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:3(449)
  21. Shi, Y., Becker, T.C., Furukawa, S., Sato, E. and Nakashima, M. (2014), "LQR control with frequency-dependent scheduled gain for a semi-active floor isolation system", Earthq. Eng. Struct. Dyn., 43(9), 1265-1284. https://doi.org/10.1002/eqe.2352
  22. Sladek, J.R. and Klinger, R.E. (1983), "Effect of tuned mass dampers on seismic response", J. Struct. Eng., 109(8), 2004-2009. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:8(2004)
  23. Spencer, Jr. B.F., Dyke, S.J. and Deoskar, H.S. (1998), "Benchmark problems in structural control: part I-active mass driver system", Earthq. Eng. Struct. Dyn., 27(11), 1127-1139. https://doi.org/10.1002/(SICI)1096-9845(1998110)27:11<1127::AID-EQE774>3.0.CO;2-F
  24. Thenozhi, S. and Yu, W. (2013), "Advances in modeling and vibration control of building structures", Annu. Rev. Control, 37(2), 346-364. https://doi.org/10.1016/j.arcontrol.2013.09.012
  25. Wu, J.C. and Yang, J.N. (2000), "LQG control of lateral-torsional motion of Nanjing TV transmission tower", Earthq. Eng. Struct. Dyn., 29(8), 1111-1130. https://doi.org/10.1002/1096-9845(200008)29:83.0.CO;2-R
  26. Xiao H., Zhao D., Gao S. and Spurgeon, S.K. (2022), "Sliding mode predictive control: A survey", Annu. Rev. Control, 54, 148-166. https://doi.org/10.1016/j.arcontrol.2022.07.003
  27. Yakut, O. and Alli, H. (2011), "Neural based sliding mode control with moving sliding surface for the seismic isolation of structures", J. Vib. Control, 17(14), 2103-2113. https://doi.org/10.1177/1077546310395964
  28. Yamamoto, M. and Sone, T. (2014), "Behavior of active mass damper (AMD) installed in high-rise building during 2011 earthquake off Pacific coast of Tohoku and verification of regenerating system of AMD based on monitoring", Struct. Control Hlth., 21(4), 634-647. https://doi.org/10.1002/stc.1590
  29. Yang, J.N., Wu, J.C. and Agrawal, A.K. (1995), "Sliding mode control for seismically excited linear structures", J. Eng. Mech., 121(12), 1386-1390. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:12(1386)
  30. You, K.P., You, J.Y. and Kim, Y.M. (2014), "LQG control of along-wind response of a tall building with an ATMD", Mathe. Probl. Eng., 2014(9). https://doi.org/10.1155/2014/206786
  31. Zuo, H., Bi, K. and Hao, H. (2020), "Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers", Smart Struct. Syst., Int. J., 26(4), 435-449. https://doi.org/10.12989/sss.2020.26.4.435