DOI QR코드

DOI QR Code

Pedestrian- and wind-induced bi-directional compound vibration control using multiple adaptive-passive TMD-TLD system

  • Liangkun Wang (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Ying Zhou (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University) ;
  • Weixing Shi (State Key Laboratory of Disaster Reduction in Civil Engineering, Tongji University)
  • Received : 2023.08.18
  • Accepted : 2024.08.05
  • Published : 2024.06.25

Abstract

To control vertical and lateral compound vibration simultaneously using an integrated smart controller, passive tuned mass damper (TMD) and tuned liquid damper (TLD) are updated and combined to an adaptive-passive TMD-TLD (AP-TMD-TLD) system. As for the vertical AP-TMD part on top of the vertical spring, it can retune itself through varying the level of liquid in the tank to adjust its mass, while the lateral AP-TLD part at the bottom of the vertical spring can retune itself by changing the level of liquid. Further, for multimodal response control, the multiple AP-TMD-TLD (MAP-TMD-TLD) system is proposed as well. Each AP-TMD-TLD in the system can identify the structural vertical and lateral modal frequencies through the wavelet-transform (WT) based algorithm and retune its vertical and lateral natural frequencies both through adjusting the level of liquid in the AP-TMD and AP-TLD parts respectively. A cantilever cable-stayed landscape bridge which is sensitive to both human-induced and wind-induced vibrations is presented as a case study. For comparison, initial parameters of MAP-TMD-TLD are mistuned. Results show that the presented system can retune its vertical and lateral frequencies precisely, while the retuned system has a better bi-directional compound control effect than the mistuned system before the retuning operation and can improve the serviceability significantly.

Keywords

Acknowledgement

The authors are grateful for the financial support received from the National Natural Science Foundation of China (Grant no. 52308526, 52025083), National Key Research and Development Program of China (Grant no. 2022YFF0608903), and this study is also sponsored by Shanghai Pujiang Program (22PJ1413600), supported by the Fundamental Research Funds for the Central Universities (22120220573, 0200121005/174), and Scientific Research Fund of Institute of Engineering Mechanics, China Earthquake Administration (Grant No. 2023D02).

References

  1. Acosta, J., Bojorquez, E., Bojorquez, J., Reyes-Salazar, A., Payan, O., Barraza, M. and Serrano, J. (2022), "Control of peak floor accelerations of buildings under wind loads using tuned mass damper", Struct. Eng. Mech., Int. J., 81(1), 1-9. https://doi.org/10.12989/sem.2022.81.1.001
  2. Bocian, M., Macdonald, J.H., Burn, J.F. and Redmill, D. (2015), "Experimental identification of the behaviour of and lateral forces from freely-walking pedestrians on laterally oscillating structures in a virtual reality environment", Eng. Struct., 105, 62-76. https://doi.org/10.1016/j.engstruct.2015.09.043
  3. Brownjohn, J.M.W., Chen, J., Bocian, M., Racic, V. and Shahabpoor, E. (2018), "Using inertial measurement units to identify medio-lateral ground reaction forces due to walking and swaying", J. Sound Vib., 426, 90-110. https://doi.org/10.1016/j.jsv.2018.04.019
  4. Cao, L. and Chen, Y. (2020), "A simplified method for determining the acceleration amplitudes of long-span floor system under walking/running loads", Struct. Eng. Mech., Int. J., 75(3), 377-387. https://doi.org/10.12989/sem.2020.75.3.377
  5. Casado, C.M., Diaz, I.M., de Sebastian, J., Poncela, A.V. and Lorenzana, A. (2013), "Implementation of passive and active vibration control on an in-service footbridge", Struct. Contr. Health Monit., 20(1), 70-87. https://doi.org/10.1002/stc.471
  6. Den, H. (1985), Mechanical Vibrations, McGraw-Hill/Dover: New York, NY, USA.
  7. Ferreira, F. and Simoes, L. (2019), "Least cost design of curved cable-stayed footbridges with control devices", Structures, 19, 68-83. https://doi.org/10.1016/j.istruc.2018.12.004
  8. Ferreira, F., Moutinho, C., Cunha, A. and Caetano, E. (2019), "Use of semi-active tuned mass dampers to control footbridges subjected to synchronous lateral excitation", J. Sound Vib., 446, 176-194. https://doi.org/10.1016/j.jsv.2019.01.026
  9. Hoa, T.N., Khatir, S., De Roeck, G., Long, N.N., Thanh, B.T. and Wahab, M.A. (2020), "An efficient approach for model updating of a large-scale cable-stayed bridge using ambient vibration measurements combined with a hybrid metaheuristic search algorithm", Smart Struct. Syst., Int. J., 25(4), 487-499. https://doi.org/10.12989/sss.2020.25.4.487
  10. Ingolfsson, E.T., Georgakis, C.T. and Jonsson, J. (2012), "Pedestrian-induced lateral vibrations of footbridges: a literature review", Eng. Struct., 45(15), 21-52. https://doi.org/10.1016/j.engstruct.2012.05.038
  11. Jimenez-Alonso, J. and Saez, A. (2018), "Motion-based design of TMD for vibrating footbridges under uncertainty conditions", Smart Struct. Syst., Int. J., 21(6), 727-740. https://doi.org/10.12989/sss.2018.21.6.727
  12. Jimenez-Alonso, J.F., Saez, A., Caetano, E. and Cunha, A. (2019), "Lateral crowd-structure interaction model to analyse the change of the modal properties of footbridges", Struct. Contr. Health Monit., 26(6), e2356. https://doi.org/10.1002/stc.2356
  13. Khazaali, M., Ma, L., Rokneddin, K., Mazzotti, M. and Bocchini, P. (2024), "A robust protocol to compute wind load coefficients of telecommunication towers and antennas using numerical simulation for risk and resilience assessment", Resilient Cities Struct., 3, 66-83. https://doi.org/10.1016/j.rcns.2024.02.001
  14. Kontoni, D. and Farghaly, A. (2019), "Mitigation of the seismic response of a cable-stayed bridge with soil-structure-interaction effect using tuned mass dampers", Struct. Eng. Mech., Int. J., 69(6), 699-712. https://doi.org/10.12989/sem.2019.69.6.699
  15. Lalonde, E.R., Dai, K., Bitsuamlak, G., Lu, W. and Zhao, Z. (2020), "Comparison of semi-active and passive tuned mass damper systems for vibration control of a wind turbine", Wind Struct., Int. J., 30(6), 663-678. https://doi.org/10.12989/was.2020.30.6.663
  16. Larsen, A. and Larose, G. (2015), "Dynamic wind effects on suspension and cable-stayed bridges", J. Sound Vib., 334, 2-28. https://doi.org/10.1016/j.jsv.2014.06.009
  17. Lazzari, P.M., Lazzari, B.M., Pacheco, A.R. and Gomes, R.R. (2019), "Numerical simulation of the constructive steps of a cable-stayed bridge using ANSYS", Struct. Eng. Mech., Int. J., 69(3), 269-281. https://doi.org/10.12989/sem.2019.69.3.269
  18. Liu, M., Li, S. and Chen, Z. (2020a), "Mitigation of wind-induced responses of cylinder solar tower by a tiny eddy current tuned mass damper based on elastic wind tunnel tests", Smart Struct. Syst., Int. J., 26(5), 619-629. https://doi.org/10.12989/sss.2020.26.5.619
  19. Liu, S., Lu, Z., Li, P., Ding, S. and Wan, F. (2020b), "Shaking table test and numerical simulation of eddy current tuned mass damper for structural seismic control considering soil-structure interaction", Eng. Struct., 212, 110531. https://doi.org/10.1016/j.engstruct.2020.110531
  20. Moutinho, C., Cunha, A., Caetano, E. and De Carvalho, J.M. (2018), "Vibration control of a slender footbridge using passive and semiactive tuned mass dampers", Struct. Contr. Health Monit., 25(9), e2208. https://doi.org/10.1002/stc.2208
  21. Nagarajaiah, S. (2010), "Adaptive passive, semiactive, smart tuned mass dampers: identification and control using empirical mode decomposition, hilbert transform, and short-term fourier transform", Struct. Contr. Health Monit., 16(7-8), 800-841. https://doi.org/10.1002/stc.349
  22. Nagarajaiah, S. and Sonmez, E. (2007), "Structures with semiactive variable stiffness single/multiple tuned mass dampers", J. Struct. Eng., 133(1), 67-77. https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(67)
  23. Nagarajaiah, S. and Varadarajan, N. (2005), "Short time fourier transform algorithm for wind response control of buildings with variable stiffness TMD", Eng. Struct., 27(3), 431-441. https://doi.org/10.1016/j.engstruct.2004.10.015
  24. Qian, C., Zhu, L., Zhu, Q., Ding, Q. and Yan, L. (2022), "Pattern and mechanism of wind-induced static instability of super-long-span cable-stayed bridge under large deformation", J. Wind Eng. Ind. Aerod., 221, 104910. https://doi.org/10.1016/j.jweia.2022.104910
  25. Racic, V. and Brownjohn, J. (2012), "Mathematical modelling of random narrow band lateral excitation of footbridges due to pedestrians walking", Comput. Struct., 90-91, 116-130. https://doi.org/10.1016/j.compstruc.2011.10.002
  26. Raeesi, A., Cheng, S. and Ting, D. (2019), "Application of a three-dimensional aeroelastic model to study the wind-induced response of bridge stay cables in unsteady wind conditions", J. Sound Vib., 375, 217-236. https://doi.org/10.1016/j.jsv.2016.04.019
  27. Shad, H., Adnan, A., Behbahani, H.P. and Vafaei, M. (2016), "Efficiency of TLDs with bottom-mounted baffles in suppression of structural responses when subjected to harmonic excitations", Struct. Eng. Mech., Int. J., 60(1), 131-148. https://doi.org/10.12989/sem.2016.60.1.131
  28. Shad, H., bin Adnan, A., Vafaei, M., Behbahani, H.P. and Oladimeji, A.M. (2018), "Experimental study on TLDs equipped with an upper mounted baffle", Smart Struct. Syst., Int. J., 21(1), 37-51. https://doi.org/10.12989/sss.2018.21.1.037
  29. Spencer Jr, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
  30. Sun, C. and Nagarajaiah, S. (2014), "Study on semi-active tuned mass damper with variable damping and stiffness under seismic excitations", Struct. Contr. Health Monit., 21(6), 890-906. https://doi.org/10.1002/stc.1620
  31. Sun, C., Nagarajaiah, S. and Dick, A.J. (2014), "Family of smart tuned mass dampers with variable frequency under harmonic excitations and ground motions: closed-form evaluation", Smart Struct. Syst., Int. J., 13(2), 319-341. https://doi.org/10.12989/sss.2014.13.2.319
  32. Sun, C., Jahangiri, V. and Sun, H. (2019), "Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations", Smart Struct. Syst., Int. J., 24(1), 53-65. https://doi.org/10.12989/sss.2019.24.1.053
  33. Wang, J. and Chen, J. (2017), "A comparative study on different walking load models", Struct. Eng. Mech., Int. J., 63(6), 847-856. https://doi.org/10.12989/sem.2017.63.6.847
  34. Wang, L., Shi, W., Zhang, Q. and Zhou, Y. (2020a), "Study on adaptive-passive multiple tuned mass damper with variable mass for a large-span floor structure", Eng. Struct., 209, 110010. https://doi.org/10.1016/j.engstruct.2019.110010
  35. Wang, L., Shi, W., Zhou, Y. and Zhang, Q. (2020b), "Semi-active eddy current pendulum tuned mass damper with variable frequency and damping", Smart Struct. Syst., Int. J., 25(1), 65-80. https://doi.org/10.12989/sss.2020.25.1.065
  36. Wang, X.C., Teng, Q., Duan, Y.F., Yun, C.B., Dong, S.L. and Lou, W.J. (2020c), "Optimal design of multiple tuned mass dampers for vibration control of a cable-supported roof", Smart Struct. Syst., Int. J., 26(5), 545-558. https://doi.org/10.12989/sss.2020.26.5.545
  37. Wang, L., Nagarajaiah, S., Shi, W. and Zhou, Y. (2021a), "Semi-active control of walking-induced vibrations in bridges using adaptive tuned mass damper considering human-structure-interaction", Eng. Struct., 244, 112743. https://doi.org/10.1016/j.engstruct.2021.112743
  38. Wang, M., Nagarajaiah, S. and Sun, F.F. (2021b), "Optimal design of supplemental negative stiffness damped outrigger system for high-rise buildings resisting multi-hazard of winds and earthquakes", J. Wind Eng. Ind. Aerod., 218, 104761. https://doi.org/10.1016/j.jweia.2021.104761
  39. Wang, Y., Wang, L. and Shi, W. (2021c), "Two-dimensional air spring based semi-active TMD for vertical and lateral walking and wind-induced vibration control", Struct. Eng. Mech., Int. J., 80(4), 377-390. https://doi.org/10.12989/sem.2021.80.4.377
  40. Wang, L., Nagarajaiah, S., Zhou, Y. and Shi, W. (2023), "Experimental study on adaptive-passive tuned mass damper with variable stiffness for vertical human-induced vibration control", Eng. Struct., 280, 115714. https://doi.org/10.1016/j.engstruct.2023.115714
  41. Wang, L., Zhou, Y. and Shi, W. (2024), "Random crowd-induced vibration in footbridge and adaptive control using semi-active TMD including crowd-structure interaction", Eng. Struct., 306, 117839. https://doi.org/10.1016/j.engstruct.2024.117839
  42. Xing, L., Gardoni, P. and Zhou, Y. (2022), "Kriging metamodels for the dynamic response of high-rise buildings with outrigger systems and fragility estimates for seismic and wind loads", Resilient Cities Struct., 1, 110-122. https://doi.org/10.1016/j.rcns.2022.04.003
  43. Zahrai, S. and Kakouei, S. (2019), "Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles", Smart Struct. Syst., Int. J., 24(3), 391-401. https://doi.org/10.12989/sss.2019.24.3.391
  44. Zhu, Q., Hui, X., Du, Y. and Zhang, Q. (2019), "A full path assessment approach for vibration serviceability and vibration control of footbridges", Struct. Eng. Mech., Int. J., 70(6), 765-779. https://doi.org/10.12989/sem.2019.70.6.765
  45. Zuo, H., Bi, K. and Hao, H. (2020), "Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers", Smart Struct. Syst., Int. J., 26(4), 435-449. https://doi.org/10.12989/sss.2020.26.4.435