DOI QR코드

DOI QR Code

Seismic performance of ductile and non-ductile reinforced concrete columns under varied axial compression

  • Received : 2023.12.09
  • Accepted : 2024.08.06
  • Published : 2024.09.10

Abstract

Large-scale cantilever reinforced concrete (RC) columns with footing/stub were examined to determine their seismic response under a quasi-static increasing-magnitude cyclic lateral loading. Three-dimensional (3D) numerical models of RC columns with ductile and non-ductile reinforcement arrangements were developed in a Finite Element (FE) software, i.e., ABAQUS, to corroborate them with the experimental study conducted by the author. Both simulated models were validated with the experimental results in all respects, and the theoretical axial capacity of columns under concentric axial load (P0) was calculated. Subsequently, a detailed parametric study was conducted by adopting the force and reinforcement variables. These variables include axial compression ratios (ACR) varying from 0.35P0 to 0.7P0 and the amount of lateral reinforcements taken as 0.33% and 1.31% representing the non-ductile and ductile columns, respectively. This research outcome conclusively quantifies the combined effect of ACR levels and lateral reinforcement spacing on the flexural response and ductility characteristics of RC columns. The comparative analysis reveals that increased ACR levels resulted in a severe reduction in strength, deformability and ductility characteristics of both ductile and non-ductile columns. Structural response of ductile columns at higher ACR levels was comparable to the non-ductile columns, nullifying the beneficial effects of ductile design provisions. Higher ACR levels caused decline in pre-peak and post-peak response trajectories, leading to an earlier attainment of peak response at lower drift levels.

Keywords

References

  1. A23.3-04 (2004), Design of Concrete Structures, Canadian Standard Association, Mississauga, Canada.
  2. Abaqus 6.14.1 (2018), Standard User's Manual, Version 6.14.1, Rhode Island, USA.
  3. ACI 318-11 (2011), Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, USA.
  4. ACI 318-14 (2014), Building Code Requirements for Structural Concrete, American Concrete Institute, Farmington Hills, USA.
  5. ACI 374.2R-13 (2013), Guide for Testing Reinforced Concrete Structural Elements under Slowly Applied Simulated Seismic Loads, American Concrete Institute, Farmington Hills, USA.
  6. Azizinamini, A., Corley, W.G. and Johal, L.S.P. (1992), "Effects of transverse reinforcement on seismic performance of columns", ACI Struct. J., 89(4), 442-450. https://doi.org/10.14359/3030.
  7. Cheng, J., Luo, X. and Xiang, P. (2020), "Experimental study on seismic behaviour of RC beams with corroded stirrups at joints under cyclic loading", J. Build. Eng., 32, 101489. https://doi.org/10.1016/j.jobe.2020.101489.
  8. Choi, M.H. and Lee, C.H. (2022), "Seismic behaviour of existing reinforced concrete columns with non-seismic details under low axial loads", Mater., 15(3), 1239. https://doi.org/10.3390/ma15031239.
  9. Dai, K.Y., Liu, C., Lu, D.G. and Yu, X.H. (2020), "Experimental investigation on seismic behaviour of corroded RC columns under artificial climate environment and electrochemical chloride extraction: A comparative study", Constr. Build. Mater., 242, 118014. https://doi.org/10.1016/j.conbuildmat.2020.118014.
  10. Dai, K.Y., Liu, C., Lu, D.G. and Yu, X.H. (2021), "Experimental investigation on the seismic performance of corroded reinforced concrete columns designed with low and high axial load ratios", J. Build. Eng., 44, 102615. https://doi.org/10.1016/j.jobe.2021.102615.
  11. Dong, J., Hui, M., Changmin, Z., Yunhe, L. and Chen, H., (2019), "Finite element analysis and axial bearing capacity of steel reinforced recycled concrete filled square steel tube columns", Struct. Eng. Mech., 71(1), 43-60. https://doi.org/10.12989/sem.2019.72.1.043.
  12. Esmaeily, A. and Xiao, Y. (2005), "Behaviour of reinforced concrete columns under variable axial loads: Analysis", ACI Struct. J., 102(5), 736-744. https://doi.org/10.14359/14669.
  13. FIB-CEB (2010), FIB Model Code for Concrete Structures-First Complete Draft, Volume 1.
  14. Hordijk, D.A. (1991), "Local approach to fatigue of concrete", Ph.D. Dissertation, TU Delft Repositories, Delft University of Technology, Delft, Netherlands.
  15. Huy, P.P.A., Yuen, T.Y.P., Hung, C.C. and Mosalam, K.M. (2022), "Seismic behaviour of full-scale lightly reinforced concrete columns under high axial loads", J. Build. Eng., 56, 104817. https://doi.org/10.1016/j.jobe.2022.104817.
  16. IS-10262:2009 (2009), Guidelines for Concrete Mix Design Proportioning, Bureau of Indian Standards, New Delhi, India.
  17. IS-13920:1993 (1993), Ductile Detailing of Reinforced Concrete Structures subjected to Seismic Forces-Code of Practice, Bureau of Indian Standards, New Delhi, India.
  18. IS-13920:2016 (2016), Ductile Detailing of Reinforced Concrete Structures subjected to Seismic Forces-Code of Practice (First Revision), Bureau of Indian Standards, New Delhi, India.
  19. IS-456:2000 (2000), Plain and Reinforced Concrete-Code of Practice (Fourth Revision), Bureau of Indian Standards, New Delhi, India.
  20. Kimura, H., Ishikawa, Y., Kambayashi, A. and Takatsu, H. (2007), "Seismic behaviour of 200 MPa ultra-high-strength steel-fiber reinforced concrete columns under varying axial load", J. Adv. Concrete Technol., 5(2), 193-200. https://doi.org/10.3151/jact.5.193.
  21. Lacobucci, R.D., Sheikh, S.A. and Bayrak, O. (2003), "Retrofit of square concrete columns with carbon fiber-reinforced polymer for seismic resistance", ACI Struct. J., 100(6), 785-794. https://doi.org/10.14359/12845.
  22. Lee, J. and Fenves, G.L. (1998), "Plastic-damage model for cyclic loading of concrete structures", J. Eng. Mech., 124(8), 892-900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892).
  23. Legeron, F. and Paultre, P. (2003), "Uniaxial confinement model for normal- and high-strength concrete columns", J. Struct. Eng., 129(2), 241-252. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:2(241).
  24. Li, B. and Park. R. (2004), "Confining reinforcement for highstrength concrete columns", ACI Struct. J., 101(3), 314-324.
  25. Li, Z. and Gan, D. (2022), "Cyclic behavior and strength evaluation of RC columns with dune sand", J. Build. Eng., 47, 103801. https://doi.org/10.1016/j.jobe.2021.103801.
  26. Li, Z., Yu, C., Xie, Y., Ma, H. and Tang, Z. (2019), "Size effect on seismic performance of high-strength reinforced concrete columns subjected to monotonic and cyclic loading", Eng. Struct., 183, 206-219. https://doi.org/10.1016/j.engstruct.2018.12.095.
  27. Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic damage model for concrete", Int. J. Solid. Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.
  28. Ma, Y., Che, Y. and Gong, J. (2012), "Behavior of corrosion damaged circular reinforced concrete columns under cyclic loading", Constr. Build. Mater., 29, 548-556. https://doi.org/10.1016/j.conbuildmat.2011.11.002.
  29. Mo, B.Y.L. and Wang, S.J. (2000), "Seismic behaviour of RC columns with various tie configurations", J. Struct. Eng., 126(10), 1122-1130. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:10(1122).
  30. Mohebkhah, A. and Tazarv, J. (2021), "Equivalent viscous damping for linked column steel frame structures", J. Constr. Steel Res., 179, 106506. https://doi.org/10.1016/j.jcsr.2020.106506.
  31. NZS 3101.1 (2006), Concrete Structures Standard, The Design of Concrete Structures and Commentary, Part 1, New Zealand Standards Executive, Hinika Whankatutuki, New Zealand.
  32. Park, R. (1989), "Structural assemblages from laboratory testing", Bull. NZ Nat. Soc. Eq. Eng., 22(3), 155-166. https://doi.org/10.5459/bnzsee.22.3.155-166.
  33. Phan, D.H. and Ker, C.L. (2020), "Seismic behaviour of full-scale square concrete filled steel tubular columns under high and varied axial compressions", Steel Compos. Struct., 18(6), 677-689. https://doi.org/10.12989/scs.2020.18.6.677.
  34. Rajput, A.S. and Sharma, U.K. (2018), "Seismic behavior of under confined square reinforced concrete columns", Struct., 13, 26-35. https://doi.org/10.1016/j.istruc.2017.10. 005.
  35. Rajput, A.S. and Sharma, U.K. (2019), "Seismic upgrade of corroded confined reinforced concrete columns using composite materials", ACI Mater. J., 116(5), 37-48. https://doi.org/10.14359/51716825.
  36. Rodrigues, H., Furtado, A., Arede, A. and Varum, H. (2018), "Influence of seismic loading on axial load variation in reinforced concrete columns", Electr. J. Facult. Civil Eng. Osijek-e-GFOS, 9(16), 37-49. https://doi.org/10.13167/2018.16.4.
  37. Saatcioglu, M. and Ozcebe, G. (1989), "Response of reinforced concrete columns to simulated seismic loading", ACI Struct. J., 86(1), 3-12. https://doi.org/10.14359/2607.
  38. Sezen, H. and Moehle, J.P. (2006), "Seismic tests of concrete columns with light transverse reinforcement", ACI Struct. J., 103(6), 842-849. https://doi.org/10.14359/18236.
  39. Sheikh, S.A. and Toklucu, M.T. (1993), "Reinforced concrete columns confined by circular spirals and hoops", ACI Struct. J., 90(5), 542-553. https://doi.org/10.14359/3949.
  40. Shi, Q., Ma, L., Wang, Q., Wang, B. and Yang, K. (2021), "Seismic performance of square concrete columns reinforced with grade 600 MPa longitudinal and transverse reinforcement steel under high axial load", Struct., 32, 1955-1970. https://doi.org/10.1016/j.istruc.2021.03.110.
  41. Subramanian, N. (2011), "Design of confinement reinforcement for RC columns", Ind. Concrete J., 85(8), 25-36.
  42. Tanaka, H. and Park, R. (1993), "Seismic design and behaviour of reinforced concrete columns with interlocking spirals", ACI Struct. J., 90(2), 192-203. https://doi.org/10.14359/4125.
  43. Taylor, A.W., Kuo, C., Wellenuis, K. and Chung, D. (1997), "A summary of cyclic lateral load tests on rectangular reinforced concrete columns", Building and Fire Research Laboratory, NISTIR, 5984, USA.
  44. Tran, C.T.N. and Li, B. (2018), "Seismic performance of RC short columns with light transverse reinforcement", Struct. Eng. Mech., 67(1), 93-104. https://doi.org/10.12989/sem.2018.67.1.093.
  45. Wang, G.G. and Hsu, C.T. (1992), "Complete biaxial loaddeformation behaviour or RC columns", J. Struct. Eng., 118(9), 2590-2609. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:9(2590.
  46. Wu, B., Sun, G., Li, H. and Wang, S. (2022), "Effect of variable axial load on seismic behaviour of reinforced concrete columns", Eng. Struct., 250, 113388. https://doi.org/10.1016/j.engstruct.2021.113388.
  47. Yang, S.Y., Song, X.B., Jia, H.E., Chen, X. and Liu, X.L. (2016), "Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebars", Constr. Build. Mater., 121, 319-327. https://doi.org/10.1016/j.conbuildmat.2016.06.002.
  48. Yang, Y., Hao, N., Xue, Y., Feng, S., Yu, Y. and Zhang, S. (2022), "Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios", Struct. Eng. Mech., 84(3), 345-360. https://doi.org/10.12989/sem.2022.84.3.345.
  49. Yuen, T.Y.P. and Kuang, J.S. (2017), "Revisiting the effect of axial force ratio on the seismic behaviour of RC building columns", Struct. Eng. Int., 27(1), 88-100. https://doi.org/10.2749/101686617X14676303589273.
  50. Zhang, X., Deng, D., Lin, X., Yang, J. and Fu, L. (2019), "Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression", Struct. Eng. Mech., 69(8), 627-635. https://doi.org/10.12989/sem.2019.69.6.627.
  51. Zhu, W., Jia, J., Gao, J. and Zhang, F. (2016), "Experimental study on steel reinforced high-strength concrete columns under cyclic lateral force and constant axial load", Eng. Struct., 125, 191-204. https://doi.org/10.1016/j.engstruct.2016.07.018.